120 research outputs found

    Characterizing the dust content of disk substructures in TW Hya

    Full text link
    We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with 50\sim50 milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87 mm, 1.3 mm, and 2.1 mm. We analyze these multi-wavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3 au cavity, the 2.1 mm and 3.1 mm images show a compact source of free-free emission, likely associated with an ionized jet. Our multi-wavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is >1>1 mm. The inner 20 au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At r>20r>20 au, we find evidence of the accumulation of large dust particle at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330 MM_{\oplus}, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5-5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.Comment: 22 pages, 17 figures, accepted for publication in A&A. Language edited versio

    Multiple Rings in the Transitional Disk of GM Aurigae Revealed by VLA and ALMA

    Get PDF
    Our understanding of protoplanetary disks is rapidly departing from the classical view of a smooth, axisymmetric disk. This is in part thanks to the high angular resolution that (sub)millimeter observations can provide. Here, we present the combined results of Atacama Large Millimeter/submillimeter Array (ALMA) (0.9 mm) and Very Large Array (VLA) (7 mm) dust continuum observations toward the protoplanetary disk around the solar analog GM Aur. Both images clearly resolve the ∼35 au inner cavity. The ALMA observations also reveal a fainter disk that extends up to ∼250 au. We model our observations using two approaches: an analytical fit to the observed deprojected visibilities, and a physical disk model that fits the spectral energy distribution as well as the VLA and ALMA observations. Despite not being evident in the deconvolved images, the VLA and ALMA visibilities can only be fitted with two bright rings of radii ∼40 and ∼80 au. Our physical model indicates that this morphology is the result of an accumulation or trapping of large dust grains, probably due to the presence of two pressure bumps in the disk. Even though alternative mechanisms cannot be discarded, the multiple rings suggest that forming planets may have cleared at least two gaps in the disk. Finally, our analysis suggests that the inner cavity might display different sizes at 0.9 and 7 mm. This discrepancy could be caused by the presence of free-free emission close to the star at 7 mm, or by a more compact accumulation of the large dust grains at the edge of the cavity.© 2018. The American Astronomical Society. All rights reserved.E.M., C.C.E., and A.R. acknowledge support from the National Science Foundation under CAREER grant Number AST-1455042 and the Sloan Foundation. G.A., M.O., and J.F.G. are supported by the MINECO (Spain) AYA2014-57369-C3 and AYA2017-84390-C2 grants (co-funded by FEDER)

    Multiband study of RX J0838-2827 and XMM J083850.4-282759: A new asynchronous magnetic cataclysmic variable and a candidate transitional millisecond pulsar

    Get PDF
    Indexación: Scopus.In a search for the counterpart to the Fermi-LAT source 3FGL J0838.8-2829, we performed a multiwavelength campaign: in the X-ray band with Swift and XMM-Newton; in the infrared and optical with OAGH, ESO-NTT and IAC80; and in the radio with ATCA observations. We also used archival hard X-ray data obtained by INTEGRAL. We report on three X-ray sources consistent with the position of the Fermi-LAT source.We confirm the identification of the brightest object, RX J0838-2827, as a magnetic cataclysmic variable that we recognize as an asynchronous system (not associated with the Fermi-LAT source). RX J0838-2827 is extremely variable in the X-ray and optical bands, and timing analysis reveals the presence of several periodicities modulating its X-ray and optical emission. The most evident modulations are interpreted as being caused by the binary system orbital period of ~1.64 h and the white dwarf spin period of ~1.47 h. A strong flux modulation at ~15 h is observed at all energy bands, consistent with the beat frequency between spin and orbital periods. Optical spectra show prominent Hß, He I and He II emission lines that are Doppler-modulated at the orbital period and at the beat period. Therefore, RX J0838-2827 accretes through a disc-less configuration and could be either a strongly asynchronous polar or a rare example of a pre-polar system on its way to reaching synchronism. Regarding the other two X-ray sources, XMM J083850.4-282759 showed a variable X-ray emission, with a powerful flare lasting for ~600 s, similar to what is observed in transitional millisecond pulsars during the subluminous disc state: this observation possibly means that this source can be associated with the Fermi-LAT source. © 2017 The Authors.https://academic.oup.com/mnras/article/471/3/2902/408195

    Precision medicine in sepsis and septic shock: From omics to clinical tools

    Get PDF
    Endotype; Organ dysfunction; SepsisEndotipo; Disfunción de órganos; SepsisEndotip; Disfunció d'òrgans; SèpsiaSepsis is a heterogeneous disease with variable clinical course and several clinical phenotypes. As it is associated with an increased risk of death, patients with this condition are candidates for receipt of a very well-structured and protocolized treatment. All patients should receive the fundamental pillars of sepsis management, which are infection control, initial resuscitation, and multiorgan support. However, specific subgroups of patients may benefit from a personalized approach with interventions targeted towards specific pathophysiological mechanisms. Herein, we will review the framework for identifying subpopulations of patients with sepsis, septic shock, and multiorgan dysfunction who may benefit from specific therapies. Some of these approaches are still in the early stages of research, while others are already in routine use in clinical practice, but together will help in the effective generation and safe implementation of precision medicine in sepsis
    corecore