28 research outputs found

    Electrospun Nanofiber Poly (3,4-ethylenedioxytriophene): poly (styrene sulfonate) / poly (vinyl alcohol) as Strain Sensor Application

    Get PDF
    A strain sensor based on poly (3,4-ethylenedioxytriophene): poly (styrene sulfonate)/poly (vinyl alcohol) (PEDOT: PSS/PVA) nanofiber has been successfully fabricated by electrospinning technique. Patterned copper wires were deposited on the mica flexible substrate with the distance of 1 mm. The sensor then characterized with various strain by one side bending. The conductivity of as-spun nanofiber mats can be adjusted from 0.03 to 1.2 µS cm-1 with various concentration of PVA and depends on its structure and its nanofiber diameter. The sensing mechanism of nanofiber-based strain sensor is due to the common piezoelectric effect of PEDOT:PSS polymer and unique nanostructure of nanofiber mats. When the sensor stretched, the length of nanofiber increase affecting the geometrical change and lead the increasing in resistance. This sensor shows good repeatability with gauge factor of 17. The performance of PEDOT:PSS/PVA nanofiber based strain sensor make nanofiber mats as promising alternative materials for strain sensor application

    An enhanced safrole sensing performance of a olyacrylonitrile nanofiber-based-QCM sensor by overlaying with chitosan

    Get PDF
    We report on a method to enhance the sensing performance of polyacrylonitrile (PAN) nanofiber-based QCM sensor overlaid with chitosan. The PAN nanofibers were deposited on the QCM sensing surface by electrospinning technique followed by overlay with chitosan by a drop-casting method. The Fourier transform infrared (FTIR) spectra confirm that chitosan covers the PAN nanofibers. The SEM images show the average diameter of the produced PAN nanofibers was 236 nm, and it increased to 283 nm after overlay with chitosan. The modified QCM sensor has the sensitivity of 18.7 Hz mg-1 L, which is better than that of PAN nanofiber alone of 4.5 Hz mg-1 L. It is an increase nearly 5 times. The analytical parameters of the limit of detection (LOD), sensitivity, a time constant, and stability improved after the PAN nanofiber sensor was overlaid with chitosan. The amine groups present in chitosan interact effectively with safrole, thus increase the sensing response. The proposed device is robust, inexpensive, and convenient for detecting safrole, and can be used as an alternative to those of classical instrumental methods for the analysis of safrole as a drug precursor

    Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole

    No full text
    Safrole is the main precursor for producing the amphetamine-type stimulant (ATS) drug, N-methyl-3,4-methylenedioxyamphetamine (MDMA), also known as ecstasy. We devise a polyacrylonitrile (PAN) nanofiber-based quartz crystal microbalance (QCM) for detecting safrole. The PAN nanofibers were fabricated by direct electrospinning to modify the QCM chips. The PAN nanofiber on the QCM chips has a diameter of 240 ± 10 nm. The sensing of safrole by QCM modified with PAN nanofiber shows good reversibility and an apparent sensitivity of 4.6 Hz·L/mg. The proposed method is simple, inexpensive, and convenient for detecting safrole, and can be an alternative to conventional instrumental analytical methods for general volatile compounds

    Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers

    No full text
    Electrospun nanofibers of polyvinyl alcohol (PVA) have poor mechanical strength. As such their use has often been avoided, particularly in applications that require high mechanical properties. The objective of this study is to increase the mechanical properties of PVA nanofiber mats via physical crosslinking with solvent vapor treatment using organic solvents, dimethyl sulfoxide (DMSO), N, N-dimethyl formamide (DMF), and methanol. The effect of solvent vapor treatment on PVA nanofibers is clearly observed by scanning electron microscope (SEM). The tensile strength increased by over 60%, 90%, and 115% after solvent vapor treatment with DMF at a temperature of 40 °C for 2 h, 4 h, and 8 h, respectively, compared to untreated PVA nanofibers. In addition, Young's modulus of PVA nanofiber mats also increased after DMF treatment. As a comparison, DMSO and methanol were also used in solvent vapor treatment because of differences in their polymer-solvent affinity. Results showed that the highest improvement (100%) in mechanical strength was obtained using DMF. This study shows that solvent vapor treatment offers a simple and inexpensive method that provides excellent results and is a promising alternative treatment for use in increasing the mechanical properties of electrospun nanofibers

    Possibility Routes for Textile Recycling Technology

    No full text
    The fashion industry contributes to a significant environmental issue due to the increasing production and needs of the industry. The proactive efforts toward developing a more sustainable process via textile recycling has become the preferable solution. This urgent and important need to develop cheap and efficient recycling methods for textile waste has led to the research community’s development of various recycling methods. The textile waste recycling process can be categorized into chemical and mechanical recycling methods. This paper provides an overview of the state of the art regarding different types of textile recycling technologies along with their current challenges and limitations. The critical parameters determining recycling performance are summarized and discussed and focus on the current challenges in mechanical and chemical recycling (pyrolysis, enzymatic hydrolysis, hydrothermal, ammonolysis, and glycolysis). Textile waste has been demonstrated to be re-spun into yarn (re-woven or knitted) by spinning carded yarn and mixed shoddy through mechanical recycling. On the other hand, it is difficult to recycle some textiles by means of enzymatic hydrolysis; high product yield has been shown under mild temperatures. Furthermore, the emergence of existing technology such as the internet of things (IoT) being implemented to enable efficient textile waste sorting and identification is also discussed. Moreover, we provide an outlook as to upcoming technological developments that will contribute to facilitating the circular economy, allowing for a more sustainable textile recycling process
    corecore