5 research outputs found

    Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells

    Get PDF
    Trace mineral studies involving metal ion chelators have been conducted in investigating the response of gene and protein expressions of certain cell lines but a few had really focused on how these metal ion chelators could affect the availability of important trace minerals such as Zn, Mn, Fe and Cu. The aim of the present study was to investigate the availability of Zn for the treatment of MC3T3-E1 osteoblast-like cells and the availability of some trace minerals in the cell culture media components after using chelexing resin in the FBS and the addition of N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN, membrane-permeable chelator) and diethylenetriaminepentaacetic acid (DTPA, membrane-impermeable chelator) in the treatment medium. Components for the preparation of cell culture medium and Zn-treated medium have been tested for Zn, Mn, Fe and Cu contents by atomic absorption spectrophotometer or inductively coupled plasma spectrophotometer. Also, the expression of bone-related genes (ALP, Runx2, PTH-R, ProCOL I, OPN and OC) was measured on the cellular Zn depletion such as chelexing or TPEN treatment. Results have shown that using the chelexing resin in FBS would significantly decrease the available Zn (p<0.05) (39.4 ± 1.5 µM vs 0.61 ± 10.15 µM) and Mn (p<0.05) (0.74 ± 0.01 µM vs 0.12 ± 0.04 µM). However, levels of Fe and Cu in FBS were not changed by chelexing FBS. The use of TPEN and DTPA as Zn-chelators did not show significant difference on the final concentration of Zn in the treatment medium (0, 3, 6, 9, 12 µM) except for in the addition of higher 15 µM ZnCl2 which showed a significant increase of Zn level in DTPA-chelated treatment medium. Results have shown that both chelators gave the same pattern for the expression of the five bone-related genes between Zn- and Zn+, and TPEN-treated experiments, compared to chelex-treated experiment, showed lower bone-related gene expression, which may imply that TPEN would be a stronger chelator than chelex resin. This study showed that TPEN would be a stronger chelator compared to DTPA or chelex resin and TPEN and chelex resin exerted cellular zinc depletion to be enough for cell study for Zn depletion

    Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats

    Get PDF
    Zn is an essential nutrient that is required in humans and animals for many physiological functions, including immune and antioxidant function, growth, and reproduction. The present study evaluated whether Zn deficiency would negatively affect bone-related enzyme, ALP, and other bone-related minerals (Ca, P and Mg) in rats. Thirty Sprague Dawley rats were assigned to one of the three different Zn dietary groups, such as Zn adequate (ZA, 35 mg/kg), pair fed (PF, 35 mg/kg), Zn deficient (ZD, 1 mg/kg) diet, and fed for 10 weeks. Food intake and body weight were measured daily and weekly, respectively. ALP was measured by spectrophotometry and mineral contents were measured by inductively coupled plasma-mass spectrophotometer (ICP-MS). Zn deficient rats showed decreased food intake and body weight compared with Zn adequate rats (p<0.05). Zn deficiency reduced ALP activity in blood (RBC, plasma) and the tissues (liver, kidney and small intestine) (p<0.05). Also, Zn deficiency reduced mineral concentrations in rat tissues (Ca for muscle and liver, and Mg for muscle and liver) (p<0.05). The study results imply the requirement of proper Zn nurture for maintaining bone growth and formation

    The decreased molar ratio of phytate:zinc improved zinc nutriture in South Koreans for the past 30 years (1969-1998)

    Get PDF
    For the assessment of representative and longitudinal Zn nutriture in South Koreans, Zn, phytate and Ca intakes were determined using four consecutive years of food consumption data taken from Korean National Nutrition Survey Report (KNNSR) every 10 years during 1969-1998. The nutrient intake data are presented for large city and rural areas. Zn intake of South Koreans in both large city and rural areas was low during 1969-1988 having values between 4.5-5.6 mg/d, after then increased to 7.4 (91% Estimated Average Requirements for Koreans, EAR = 8.1 mg/d) and 6.7 mg/d (74% EAR) in 1998 in large city and rural areas, respectively. In 1968, Zn intake was unexpectedly higher in rural areas due to higher grain consumption, but since then until 1988 Zn intake was decreased and increased back in 1998. Food sources for Zn have shifted from plants to a variety of animal products. Phytate intake of South Koreans during 1969-1978 was high mainly due to the consumption of grains and soy products which are major phytate sources, but decreased in 1998. The molar ratios of phytate:Zn and millimmolar ratio of phytate×Ca:Zn were decreased due to the decreased phytate intake in South Koreans, which implies higher zinc bioavailability. The study results suggest that Zn nutriture has improved by increased dietary Zn intakes and the decreased molar ratio of phytate:Zn in South Koreans in both large city and rural areas
    corecore