144 research outputs found

    Rise of the feminine voice and a renewed consciousness in Spanish contemporary literature Cronica del Desamor por Rosa Montero

    Get PDF

    Veritas et Vanitas

    Get PDF
    A journal of creative nonfiction produced by students at the Marion campus of The Ohio State University with contributions from the students and faculty at the Marion campus of The Ohio State University and Marion Technical College

    Assessing childhood maltreatment and mental health correlates of disordered eating profiles in a nationally representative sample of English females

    Get PDF
    PURPOSE: Previous research suggests that childhood maltreatment is associated with the onset of eating disorders (ED). In turn, EDs are associated with alternative psychopathologies such as depression and posttraumatic stress disorder (PTSD), and with suicidality. Moreover, it has been reported that various ED profiles may exist. The aim of the current study was to examine the profiles of disordered eating and the associations of these with childhood maltreatment and with mental health psychopathology. METHODS: The current study utilised a representative sample of English females (N = 4206) and assessed for the presence of disordered eating profiles using Latent Class Analysis. Multinomial logistic regression was implemented to examine the associations of childhood sexual and physical abuse with the disordered eating profiles and the associations of these with PTSD, depression and suicidality. RESULTS: Results supported those of previous findings in that we found five latent classes of which three were regarded as disordered eating classes. Significant relationships were found between these and measures of childhood trauma and mental health outcomes. CONCLUSIONS: Childhood sexual and physical abuse increased the likelihood of membership in disordered eating classes and these in turn increased the likelihood of adverse mental health and suicidal outcomes

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    Purpose We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Methods Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. Results We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. Conclusion Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals

    Defining the genotypic and phenotypic spectrum of X-linked MSL3-related disorder

    Get PDF
    PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals

    Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Chlamydiae </it>are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum. Based on their localization, Inc proteins likely play important roles in the interactions between the microbe and the host. In this paper we sought to identify and analyze, using bioinformatics tools, all putative Inc proteins in published chlamydial genomes, including an environmental species.</p> <p>Results</p> <p>Inc proteins contain at least one bilobal hydrophobic domain made of two transmembrane helices separated by a loop of less than 30 amino acids. Using bioinformatics tools we identified 537 putative Inc proteins across seven chlamydial proteomes. The amino-terminal segment of the putative Inc proteins was recognized as a functional TTS signal in 90% of the <it>C. trachomatis </it>and <it>C. pneumoniae </it>sequences tested, validating the data obtained <it>in silico</it>. We identified a <it>macro </it>domain in several putative Inc proteins, and observed that Inc proteins are enriched in segments predicted to form coiled coils. A surprisingly large proportion of the putative Inc proteins are not constitutively translocated to the inclusion membrane in culture conditions.</p> <p>Conclusions</p> <p>The Inc proteins represent 7 to 10% of each proteome and show a great degree of sequence diversity between species. The abundance of segments with a high probability for coiled coil conformation in Inc proteins support the hypothesis that they interact with host proteins. While the large majority of Inc proteins possess a functional TTS signal, less than half may be constitutively translocated to the inclusion surface in some species. This suggests the novel finding that translocation of Inc proteins may be regulated by as-yet undetermined mechanisms.</p

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex
    • …
    corecore