67 research outputs found

    Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin

    Get PDF
    VanA-type resistance to glycopeptide antibiotics in clinical enterococci is regulated by the VanSARA two-component signal transduction system. The nature of the molecular ligand that is recognised by the VanSA sensory component has not hitherto been identified. Here we employ purified, intact and active VanSA membrane protein (henceforth referred to as VanS) in analytical ultracentrifugation experiments to study VanS oligomeric state and conformation in the absence and presence of vancomycin. A combination of sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge (SEDFIT, SEDFIT-MSTAR and MULTISIG analysis) showed that VanS in the absence of the ligand is almost entirely monomeric (molar mass M = 45.7 kDa) in dilute aqueous solution with a trace amount of high molar mass material (M ~ 200 kDa). The sedimentation coefficient s suggests the monomer adopts an extended conformation in aqueous solution with an equivalent aspect ratio of ~ (12+2). In the presence of vancomycin over a 33% increase in the sedimentation coefficient is observed with the appearance of additional higher s components, demonstrating an interaction, an observation consistent with our circular dichroism measurements. The two possible causes of this increase in s – either a ligand induced dimerization and/or compaction of the monomer are considered

    Identification and Gene Expression Analysis of a Taxonomically Restricted Cysteine-Rich Protein Family in Reef-Building Corals

    Get PDF
    The amount of genomic sequence information continues to grow at an exponential rate, while the identification and characterization of genes without known homologs remains a major challenge. For non-model organisms with limited resources for manipulative studies, high-throughput transcriptomic data combined with bioinformatics methods provide a powerful approach to obtain initial insights into the function of unknown genes. In this study, we report the identification and characterization of a novel family of putatively secreted, small, cysteine-rich proteins herein named Small Cysteine-Rich Proteins (SCRiPs). Their discovery in expressed sequence tag (EST) libraries from the coral Montastraea faveolata required the performance of an iterative search strategy based on BLAST and Hidden-Markov-Model algorithms. While a discernible homolog could neither be identified in the genome of the sea anemone Nematostella vectensis, nor in a large EST dataset from the symbiotic sea anemone Aiptasia pallida, we identified SCRiP sequences in multiple scleractinian coral species. Therefore, we postulate that this gene family is an example of lineage-specific gene expansion in reef-building corals. Previously published gene expression microarray data suggest that a sub-group of SCRiPs is highly responsive to thermal stress. Furthermore, data from microarray experiments investigating developmental gene expression in the coral Acropora millepora suggest that different SCRiPs may play distinct roles in the development of corals. The function of these proteins remains to be elucidated, but our results from in silico, transcriptomic, and phylogenetic analyses provide initial insights into the evolution of SCRiPs, a novel, taxonomically restricted gene family that may be responsible for a lineage-specific trait in scleractinian corals

    A Novel Enediynyl Peptide Inhibitor of Furin That Blocks Processing of proPDGF-A, B and proVEGF-C

    Get PDF
    BACKGROUND: Furin represents a crucial member of secretory mammalian subtilase, the Proprotein Convertase (PC) or Proprotein Convertase Subtilisin/Kexin (PCSK) superfamily. It has been linked to cancer, tumorgenesis, viral and bacterial pathogenesis. As a result it is considered a major target for intervention of these diseases. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we report, for the first time, the synthesis and biological evaluation of a newly designed potent furin inhibitor that contains a highly reactive beta-turn inducing and radical generating "enediynyl amino acid" (Eda) moiety. "Eda" was inserted between P1 and P1' residues of hfurin(98-112) peptide, derived from the primary cleavage site of furin's own prodomain. The resulting hexadecapeptide derivative inhibited furin in vitro with IC(50) approximately 40 nM when measured against the fluorogenic substrate Boc-RVRR-MCA. It also inhibited furin-mediated cleavage of a fluorogenic peptide derived from hSARS-CoV spike protein with IC(50) approximately 193 nM. Additionally it also blocked furin-processing of growth factors proPDGF-A, B and VEGF-C that are linked to tumor genesis and cancer. Circular dichroism study showed that this inhibitor displayed a predominantly beta-turn structure while western blots confirmed its ability to protect furin protein from self degradation. CONCLUSION/SIGNIFICANCE: These findings imply its potential as a therapeutic agent for intervention of cancer and other furin-associated diseases

    Acetonic Extract of Buxus sempervirens Induces Cell Cycle Arrest, Apoptosis and Autophagy in Breast Cancer Cells

    Get PDF
    Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer

    Abnormalities of peptide metabolism in Alzheimer disease

    No full text
    The steady-state level of peptide hormones represents a balance between their biosynthesis and proteolytic processing by convertases and their catabolism by proteolytic enzymes. Low levels of neuropeptide Y, somatostatin and corticotropin-releasing factor, described in Alzheimer disease (AD), were related to a defect in proteolytic processing of their protein precursors. In contrast the abundance of beta-amyloid peptides, the major protein constituents of senile plaques is likely related to inefficient catabolism. Therefore, attention is mainly focused on convertases that generate active peptides and counter-regulatory proteases that are involved in their catabolism. Some well-described proteases such as NEP are thought to be involved in beta-amyloid catabolism. The search of other possible candidates represents a primary effort in the field. A variety of vascular risk factors such as diabetes, hypertension and arteriosclerosis suggest that the functional vascular defect contributes to AD pathology. It has also been described that beta-amyloid peptides potentiate endothelin-1 induced vasoconstriction. In this review, we will critically evaluate evidence relating proteases implicated in amyloid protein precursor proteolytic processing and beta-amyloid catabolism

    Favourable side-chain orientation of cleavage site dibasic residues of prohormone in proteolytic processing by prohormone convertase 1/3

    No full text
    Previous studies using selectively modified pro-ocytocin/neurophysin substrate analogues and the purified metalloprotease, pro-ocytocin/neurophysin convertase (magnolysin; EC 3.4 24.62), have shown that dibasic cleavage site processing is associated with a prohormone sequence organized in a beta-turn structure. We have used various peptide analogues of the pro-ocytocin-neurophysin processing domain, and recombinant prohormone convertase 1/3, to test the validity of this property towards this member of the family of prohormone convertases (PCs). The enzymatic cleavage analysis and kinetics showed that: (a) with methyl amide (N-Met) modification, a secondary structure beta-turn breaker, the enzyme substrate interaction was abolished; (b) cleavage was favoured when the dibasic substrate side-chains were oriented in opposite directions; (c) the amino acid present at the P'1 position is important in the enzyme-substrate interaction; (d) the flexibility of the peptide substrate is necessary for the interaction; (e) Addition of dimethylsulfoxide to the cleavage assay favoured the cleavage of the pro-ocytocin/neurophysin large substrate over that of the smaller one pGlu-Arg-Thr-Lys-Arg-methyl coumarin amide. These data allowed us to conclude that proteolytic processing of pro-ocytocin-related peptide substrates by PC1/3 as well as by the metalloenzyme, magnolysin, involves selective recognition of precise cleavage site local secondary structure by the processing enzyme. It is hypothesized that this may represent a general property of peptide precursor proteolytic processing systems

    Role of beta-turn in proteolytic processing of peptide hormone precursors at dibasic sites

    No full text
    Proteolytic activation of prohormones and proproteins occurs most frequently at the level of basic amino acids arranged in doublets. Previous predictions by Rholam et al. [Rholam, M., Nicolas, P., & Cohen, P. (1986) FEBS Lett. 207. 1-6] have indicated, on the basis of 20 prohormone sequences containing 53 dibasic potential processing sites, that dibasic sites situated in, or next to, beta-turns were cleaved in vivo, whereas sites included in ordered structures like beta-sheets or alpha-helices were not. We have used peptide analogs of the proocytocin/neurophysin processing domain and a purified preparation of the putative proocytocin convertase from bovine tissues as a model to demonstrate that (1) processing at dibasic sites is associated with a prohormone sequence organized in a beta-turn structure; (2) the beta-turn is an interchangeable motif since the original sequence could be replaced by an heterologous one possessing the ability to organize as a beta-turn; and (3) this particular secondary structure participates in the catalytic reaction, most likely by favoring the interactions of the substrate with the processing endoprotease. It is concluded that, in addition to the dibasic and other amino acids around the cleavage loci, the beta-turn constitutes a key feature in the proteolytic processing reaction in participating as the favorable conformation for optimal substrate-enzyme active site recognition
    corecore