433 research outputs found

    Four in One: Cryptic Diversity in Geoffroy’s Side-Necked Turtle \u3cem\u3ePhrynops geoffroanus\u3c/em\u3e (Schweigger 1812) (Testudines: Pleurodira: Chelidae) in Brazil

    Get PDF
    Turtles are one of the most threatened groups of vertebrates, with about 60% of species classified at some level of extinction risk. Compounding this extinction crisis are cryptic species and species complexes that are evaluated under a single species epithet but harbor multiple species, each of which needs to be evaluated independently. The Phrynops geoffroanus species group is a classic example. Described first in 1812, it is currently thought to harbor multiple species. To test this hypothesis, we collected mitochondrial and nuclear genomic data, morphometric data, and distribution and associated biome information. We applied statistically rigorous species delimitation analyses, taxonomic hypotheses tests, and fully coalescent phylogenetic reconstruction methods, concluding that the Phrynops geoffroanus species complex comprises four geographically structured species/lineages that diverged during the Pleistocene and are currently geographically structured along the main South American river basins and biomes. These species/lineages show subtle and largely non-significant differences in shape but are characterized by differences in coloration and patterns of marks on the head and plastron. Our results contribute to the understanding of species diversity and diversification of biodiversity in South America and provide an important basis for the conservation of freshwater turtles

    Capture, Reconstruction, and Representation of the Visual Real World for Virtual Reality

    Get PDF
    We provide an overview of the concerns, current practice, and limitations for capturing, reconstructing, and representing the real world visually within virtual reality. Given that our goals are to capture, transmit, and depict complex real-world phenomena to humans, these challenges cover the opto-electro-mechanical, computational, informational, and perceptual fields. Practically producing a system for real-world VR capture requires navigating a complex design space and pushing the state of the art in each of these areas. As such, we outline several promising directions for future work to improve the quality and flexibility of real-world VR capture systems

    Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs.</p> <p>Methods</p> <p>We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP).</p> <p>Results</p> <p>Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways.</p> <p>Conclusions</p> <p>Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.</p

    Effects of hypoxia on the distribution of calcium in arterial smooth muscle cells of rats and swine

    Full text link
    Exposure to hypoxia caused an increase in the hematocrit and right heart weight of experimental rats, but did not affect calcium-45 uptake by pulmonary arterial smooth muscle cells. However, autoradiographic studies showed that hypoxia apparently caused a shift of 45-Ca from primarily extracellular sites in arteries of control rats to intracellular sites in tissues of hypertensive rats. Cytochemical studies of calcium distributions in pulmonary arterial smooth muscle cells support the autoradiographic data and show that in both rats and swine the majority of pyroantimonate granules occur extracellularly in control tissues. In contrast, hypoxic tissues displayed a greatly reduced number of granules in extracellular sites and an increase in the amount of precipitate in intracellular sites. In pulmonary arterial smooth muscle cells from hypoxic rats most of the precipitate was associated with the caveolae intracellulares, while in corresponding cells from hypoxic swine the majority of the pyroantimonate granules were localized to the sarcoplasmic reticulum. Hypoxia may produce pulmonary hypertension by interfering with the ability of the arterial smooth muscle cells to maintain transmembrane ionic gradients, thus producing an effective increase in cytoplasmic calcium levels. The increased calcium may then activate the contractile apparatus to produce a sustained vasoconstriction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47664/1/441_2004_Article_BF00223235.pd

    The role of population PK-PD modelling in paediatric clinical research

    Get PDF
    Children differ from adults in their response to drugs. While this may be the result of changes in dose exposure (pharmacokinetics [PK]) and/or exposure response (pharmacodynamics [PD]) relationships, the magnitude of these changes may not be solely reflected by differences in body weight. As a consequence, dosing recommendations empirically derived from adults dosing regimens using linear extrapolations based on body weight, can result in therapeutic failure, occurrence of adverse effect or even fatalities. In order to define rational, patient-tailored dosing schemes, population PK-PD studies in children are needed. For the analysis of the data, population modelling using non-linear mixed effect modelling is the preferred tool since this approach allows for the analysis of sparse and unbalanced datasets. Additionally, it permits the exploration of the influence of different covariates such as body weight and age to explain the variability in drug response. Finally, using this approach, these PK-PD studies can be designed in the most efficient manner in order to obtain the maximum information on the PK-PD parameters with the highest precision. Once a population PK-PD model is developed, internal and external validations should be performed. If the model performs well in these validation procedures, model simulations can be used to define a dosing regimen, which in turn needs to be tested and challenged in a prospective clinical trial. This methodology will improve the efficacy/safety balance of dosing guidelines, which will be of benefit to the individual child
    corecore