9,814 research outputs found

    Preliminary rotor wake measurements with a laser velocimeter

    Get PDF
    A laser velocimeter (LV) was used to determine rotor wake characteristics. The effect of various fuselage widths and rotor-fuselage spacings on time averaged and detailed time dependent rotor wake velocity characteristics was defined. Definition of time dependent velocity characteristics was attempted with the LV by associating a rotor azimuth position with each velocity measurement. Results were discouraging in that no apparent time dependent velocity characteristics could be discerned from the LV measurements. Since the LV is a relatively new instrument in the rotor wake measurement field, the cause of this lack of periodicity is as important as the basic research objectives. An attempt was made to identify the problem by simulated acquisition of LV-type data for a predicted rotor wake velocity time history. Power spectral density and autocorrelation function estimation techniques were used to substantiate the conclusion that the primary cause of the lack of time dependent velocity characteristics was the nonstationary flow condition generated by the periodic turbulence level that currently exists in the open throat configuration of the wind tunnel

    Lognormal scale invariant random measures

    Full text link
    In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with lognormal weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness of measures satisfying the aforementioned continuous equation; these measures fall under the scope of the Gaussian multiplicative chaos theory developed by J.P. Kahane in 1985 (or possibly extensions of this theory). As a by product, we also obtain an explicit characterization of the covariance structure of these measures. We also prove that qualitative properties such as long-range independence or isotropy can be read off the equation.Comment: 31 pages; Probability Theory and Related Fields (2012) electronic versio

    Effective Theories for Circuits and Automata

    Full text link
    Abstracting an effective theory from a complicated process is central to the study of complexity. Even when the underlying mechanisms are understood, or at least measurable, the presence of dissipation and irreversibility in biological, computational and social systems makes the problem harder. Here we demonstrate the construction of effective theories in the presence of both irreversibility and noise, in a dynamical model with underlying feedback. We use the Krohn-Rhodes theorem to show how the composition of underlying mechanisms can lead to innovations in the emergent effective theory. We show how dissipation and irreversibility fundamentally limit the lifetimes of these emergent structures, even though, on short timescales, the group properties may be enriched compared to their noiseless counterparts.Comment: 11 pages, 9 figure

    Tackling concentrated worklessness: integrating governance and policy across and within spatial scales

    Get PDF
    Spatial concentrations of worklessness remained a key characteristic of labour markets in advanced industrial economies, even during the period of decline in aggregate levels of unemployment and economic inactivity evident from the late 1990s to the economic downturn in 2008. The failure of certain localities to benefit from wider improvements in regional and national labour markets points to a lack of effectiveness in adopted policy approaches, not least in relation to the governance arrangements and policy delivery mechanisms that seek to integrate residents of deprived areas into wider local labour markets. Through analysis of practice in the British context, we explore the difficulties of integrating economic and social policy agendas within and across spatial scales to tackle problems of concentrated worklessness. We present analysis of a number of selected case studies aimed at reducing localised worklessness and identify the possibilities and constraints for effective action given existing governance arrangements and policy priorities to promote economic competitiveness and inclusion

    Another derivation of the geometrical KPZ relations

    Full text link
    We give a physicist's derivation of the geometrical (in the spirit of Duplantier-Sheffield) KPZ relations, via heat kernel methods. It gives a covariant way to define neighborhoods of fractals in 2d quantum gravity, and shows that these relations are in the realm of conformal field theory

    Calibration of colour gradient bias in shear measurement using HST/CANDELS data

    Get PDF
    Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point-spread function (PSF) in space-based observations is greatly beneficial, but its chromaticity for a broad band observation can lead to new subtle effects that could hitherto be ignored: the PSF of a galaxy is no longer uniquely defined and spatial variations in the colours of galaxies result in biases in the inferred lensing signal. Taking Euclid as a reference, we show that this colourgradient bias (CG bias) can be quantified with high accuracy using available multi-colour Hubble Space Telescope (HST) data. In particular we study how noise in the HST observations might impact such measurements and find this to be negligible. We determine the CG bias using HST observations in the F606W and F814W filters and observe a correlation with the colour, in line with expectations, whereas the dependence with redshift is weak. The biases for individual galaxies are generally well below 1%, which may be reduced further using morphological information from the Euclid data. Our results demonstrate that CG bias should not be ignored, but it is possible to determine its amplitude with sufficient precision, so that it will not significantly bias the weak lensing measurements using Euclid data
    • …
    corecore