23 research outputs found

    Spotting the Critical Service Quality Determinants in the Ghanaian Retail Banking: Importance and Effects

    Get PDF
    Critical of the areas in customer-centered marketing paradigms and philosophies, is ensuring that existing customers are satisfied to enable you maintain their loyalty, repurchase and to woo in new clientele. The study examined the critical influences of customer satisfaction in the retail banking of Ghana and its effects on customers’ purchasing behavior. The study included 791 clienteles drawn from the sampling population. A cross-sectional survey was used to examine the experience of benefiting from service quality elements, perceived service quality and customers purchasing behavior based on a customized 18 dimensions of SERVQUAL. By means of frequency and mediation analysis, estimates for the direct and indirect effects of benefiting from the service quality influences on perceived service quality and consumer purchasing behavior was assessed. The impacts of evidence of service quality factors on customers purchasing behavior, was partially-mediated by perceived service quality with statistically-significant indirect effect. The results prompted that the banks’ aesthetics, cleanliness, communication skills, competence, availability, access and security of their clienteles be prioritized areas they can’t afford to fail. Keywords: Service Quality, Determinants, Retail Banking, Customer Satisfaction, Behavioral intentions. DOI: 10.7176/EJBM/11-27-08 Publication date:September 30th 201

    Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties

    No full text
    The enhanced carbon footprint of the construction sector has created the need for CO2 emission control and mitigation. CO2 emissions in the construction sector are influenced by a variety of factors, including raw material preparation, cement production, and, most notably, the construction process. Thus, using biobased constituents in cement could reduce CO2 emissions. However, biobased constituents can degrade and have a negative impact on cement performance. Recently, carbonised biomass known as biochar has been found to be an effective partial replacement for cement. Various studies have reported improved mechanical strength and thermal properties with the inclusion of biochar in concrete. To comprehend the properties of biochar-added cementitious materials, the properties of biochar and their effect on concrete need to be examined. This review provides a critical examination of the mechanical and thermal properties of biochar and biochar-added cementitious materials. The study also covers biochar’s life cycle assessment and economic benefits. Overall, the purpose of this review article is to provide a means for researchers in the relevant field to gain a deeper understanding of the innate properties of biochar imparted into biochar-added cementitious materials for property enhancement and reduction of CO2 emissions

    The curious case of the second/end peak in the heat release rate of wood: A cone calorimeter investigation

    No full text
    The reasons behind the occurrence of a second/end peak heat release rate (PHRR) during wood combustion under radiative heating were determined. Effects of the type of rear material, wood thickness, char progression, and its microstructure, as well as moisture content/transport in spruce wood, were studied. Rear materials used were insulating Kaowool, conducting steel, and the same wood but physically separated from test specimen by aluminium foil. The intensity of the second/end PHRR with Kaowool was almost 50% more than that of the sample with steel. Thus, the second/end peak is governed by the boundary condition defined by the rear material, which determines the heat losses at the rear side of the specimen and consequently the temperature of the specimen. Higher specimen temperature enhances the pyrolysis rate, thereby causing the second/end PHRR. The appearance times and values of the second/end PHRR for 30, 20, and 10 mm wood were 1740 s/78 kWm−2, 685 s/134 kWm−2, and 450 s/160 kWm−2, respectively. Char progressed to the rear of the samples even with a thin (8 mm) conductive steel substrate. Cracks in char grew almost three times wider during the second/end PHRR compared to the sample with no second/end peak. Char cracking had no significance on the time of occurrence of the second/end PHRR but affected the overall heat release. High moisture content reduced the charring rate and delayed the time of occurrence of the second/end PHRR as more water was needed to undergo a phase change, requiring a higher amount of energy.Validerad;2023;Nivå 2;2023-06-29 (sofila);</p

    Microscale combustion calorimetry assessment of green composites made with chicken feather-modified soy protein resins and jute fabric

    No full text
    Biodegradable, and sustainably produced, ‘green’ plastics are actively being researched to replace conventional, environmentally harmful petroleum-based plastics. However, before these green plastics get adopted, they must match the properties of their conventional counterparts. In many applications, fire-safety can be a key parameter where naturally derived green materials could potentially outcompete petroleum-based plastics. In the present research, green resins and composites were fabricated using soy protein isolate (SPI), waste chicken feather fibers (CFF), jute fabric (JF), and glutaraldehyde (GA), and evaluated for their critical fire-safety parameters through Microscale Cone Calorimetry (MCC) characterization. The loading of CFF from 0 to 30 wt% increased the specific peak heat release rate (pHRR) from 101 to 120 W/g for CFF/SPI resins without GA and from 94.5 to 114 W/g for GA crosslinked CFF/SPI resins. GA was thus shown to improve fire-safety for CFF/SPI resins. However, for JF/(CFF/SPI) composites, CFF did not show a proportional relationship with fire-safety. Rather, at 20 wt% CFF, the pHRR was minimized to 81.1 W/g for JF/(CFF/SPI) composites without GA and to 86.0 W/g for GA-crosslinked JF/(CFF/SPI) composites. This demonstrated that the addition of JF improved fire-safety despite its known combustibility, and even removed the need of the toxic crosslinker GA. Results also indicated that all variations of the fabricated CFF/SPI resins and JF/(CFF/SPI) composites had lower specific pHRR than typical petroleum-based plastics, clearly demonstrating the benefits of switching to SPI based green resins and composites. These green composites would be suitable for many applications including housing and transportation where fire-safety can be critical

    Novel Approaches to Modelling Flammability Characteristics of Polymethyl Methacrylate (PMMA) via Multivariate Adaptive Regression Splines and Random Forest Methods

    No full text
    Soft-computing techniques for fire safety parameter predictions in flammability studies are essential for describing a material fire behaviour. This study proposed, two novel Artificial Intelligence developed models, Multivariate Adaptive Regression Splines (MARS) and Random Forest (RF) methods, to model and predict peak heat release rate (pHRR) of Polymethyl methacrylate (PMMA) from Microscale Combustion Calorimetry (MCC) experiment. From the statistical analysis, MARS presented the highest coefficient of determination (R2) values of (0.9998) and (0.9996) for training and testing respectively, with low MAD, MAPE and RMSE values. Comparatively, MARS outperformed RF in the predictions of pHRR, through its model algorithms that generated optimized equations for pHRR predictions, covering all non-linearity points of the experimental data. Amongst the input variables (sample mass, THR, HRC, pTemp and pTime), heating rate (β), highly influenced pHRR outcome predictions from MARS and RF models. However, to validate the performance and applicability of the proposed models. Results of MARS and RF were benchmarked with that from Artificial Neural Network (ANN) methods. The MARS and RF models observed the least error deviation when compared with pHRR results for PMMA from the ANN models. This study therefore, recommends the adoption of MARS and RF in the predictions of flammability characteristics of polymeric materials

    Ablation behavior studies of charring materials with different thickness and heat flux intensity

    No full text
    Surface ablation and in-depth temperature distribution of the charring material are the key properties of the thermal protection system in re-entry vehicles subjected to aerodynamic heating. To investigate the factors affecting the ablation performance of charring materials, the influence of decomposition reaction and surface recession on ablation was added to the heat conduction and surface energy balance equation, to comprehend the phenomenon of surface material removal. The model developed in this study was verified by comparing with results from traditional finite difference method. Furthermore, the effects of external constant heat flux, initial material thickness, and heating time on ablation were determined and discussed on temperature, surface recession, and density distribution. The change trend of the external heat flux significantly affects the change trend of the surface temperature. The material thickness and heating time have great influence on the bottom temperature. This paper contributes to the understanding of the heat transfer and ablation of the charring materials, thereby providing a basis for the selection of the thermal protection material for re-entry vehicles

    Fire Behavior of Wood-Based Composite Materials

    No full text
    Wood-based composites such as wood plastic composites (WPC) are emerging as a sustainable and excellent performance materials consisting of wood reinforced with polymer matrix with a variety of applications in construction industries. In this context, wood-based composite materials used in construction industries have witnessed a vigorous growth, leading to a great production activity. However, the main setbacks are their high flammability during fires. To address this issue, flame retardants are utilized to improve the performance of fire properties as well as the flame retardancy of WPC material. In this review, flame retardants employed during manufacturing process with their mechanical properties designed to achieve an enhanced flame retardancy were examined. The addition of flame retardants and manufacturing techniques applied were found to be an optimum condition to improve fire resistance and mechanical properties. The review focuses on the manufacturing techniques, applications, mechanical properties and flammability studies of wood fiber/flour polymer/plastics composites materials. Various flame retardant of WPCs and summary of future prospects were also highlighted

    USING X-RAY COMPUTED TOMOGRAPHY TO MEASURE FIRE DEGRADATION OF A TIMBER CONNECTION

    No full text
    International audienceThe charring behaviour of timber elements under fire is well understood, however, the effects of fire and heat on connections are not equally well known. Timber connections often use steel fasteners, like screws or angle brackets, which conduct heat much better than wood. Moreover, these fasteners lose their mechanical resistance and capacity under elevated temperatures. X-ray computed tomography (CT) can be used to reconstruct the internal structure of wood non-destructively. It should therefore be possible to use this technology to also study the progressive degradation due to fire of a timber connection. The goal of the present study is to investigate how CT can be used to analyse the degradation of a timber connection due to fire. Samples of Norway spruce with self-tapping screws were scanned before and after a fire exposure, and mechanical tests were performed. The results indicate that the degradation due to fire in a timber connection can be observed in CT scans, but that certain measures need to be taken to minimise the effects of image artefacts due to X-ray scattering and photon starvation

    Using X-Ray Computed Tomography To Measure Fire Degradation Of A Timber Connection

    No full text
    The charring behaviour of timber elements under fire is well understood, however, the effects of fire and heat on connections are not equally well known. Timber connections often use steel fasteners, like screws or angle brackets, which conduct heat much better than wood. Moreover, these fasteners lose their mechanical resistance and capacity under elevated temperatures. X-ray computed tomography (CT) can be used to reconstruct the internal structure of wood non-destructively. It should therefore be possible to use this technology to also study the progressive degradation due to fire of a timber connection. The goal of the present study is to investigate how CT can be used to analyse the degradation of a timber connection due to fire. Samples of Norway spruce with self-tapping screws were scanned before and after a fire exposure, and mechanical tests were performed. The results indicate that the degradation due to fire in a timber connection can be observed in CT scans, but that certain measures need to be taken to minimise the effects of image artefacts due to X-ray scattering and photon starvation.ISBN för värdpublikation: 9781713873273, 9781713873273</p

    Wood Dust Flammability Analysis by Microscale Combustion Calorimetry

    No full text
    To study the practicability of a micro combustion calorimeter to analyze the calorimetry kinetics of wood, a micro combustion calorimeter with 13 heating rates from 0.1 to 5.5 K/s was used to perform the analysis of 10 kinds of common hardwood and softwood samples. As a microscale combustion measurement method, MCC (microscale combustion calorimetry) can be used to judge the flammability of materials. However, there are two methods for measuring MCC: Method A and Method B. However, there is no uniform standard for the application of combustible MCC methods. In this study, the two MCC standard measurement Methods A and B were employed to check their practicability. With Method A, the maximum specific heat release rate, heat release temperature, and specific heat release of the samples were obtained at different heating rates, while for Method B, the maximum specific combustion rate, combustion temperature and net calorific values of the samples were obtained at different heating rates. The ignition capacity and heat release capacity were then derived and evaluated for all the common hardwood and softwood samples. The results obtained by the two methods have significant differences in the shape of the specific heat release rate curves and the amplitude of the characteristic parameters, which lead to the differences of the derived parameters. A comparison of the specific heat release and the net calorific heat of combustion with the gross caloric values and heating values obtained by bomb calorimetry was also made. The results show that Method B has the potentiality to evaluate the amount of combustion heat release of materials
    corecore