12 research outputs found

    Tracing seed to seedling transmission of the wheat blast pathogen Magnaporthe oryzae

    No full text
    Wheat blast caused by Magnaporthe oryzae pathotype Triticum (MoT), initially restricted to South America, is a global threat for wheat after spreading to Asia in 2016 by the introduction of contaminated seeds, raising the question about transmission of the pathogen from seeds to seedlings, a process so far not well understood. We therefore studied the relationship between seed infection and disease symptoms on seedlings and adult plants. To accomplish this objective, we inoculated spikes of wheat cv. Apogee with a transgenic isolate (MoT-DsRed, with the addition of being resistant to hygromycin). We identified MoT-DsRed in experiments using hygromycin resistance for selection or by observation of DsRed fluorescence. The seeds from infected plants looked either apparently healthy or shrivelled. To evaluate the transmission, two experimental designs were chosen (blotter test and greenhouse) and MoT-DsRed was recovered from both. This revealed that MoT is able to colonize wheat seedlings from infected seeds under the ground. The favourable conditions of temperature and humidity allowed a high recovery rate of MoT from wheat shoots when grown in artificial media. Around 42 days after germination of infected seeds, MoT-DsRed could not be reisolated, indicating that fungal progression, at this time point, did not proceed systemically/endophytically. We hypothesize that spike infection might occur via spore dispersal from infected leaves rather than within the plant. Because MoT-DsRed was not only successfully reisolated from seed coats and germinating seeds with symptoms, but also from apparently healthy seeds, urgent attention is needed to minimize the risks of inadvertent dispersal of inoculum.Fil: Martinez, Sergio Ivan. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; ArgentinaFil: Wegner, Alex. Rwth Aachen University; AlemaniaFil: Bohnert, Stefan. Rwth Aachen University; AlemaniaFil: Schaffrath, Ulrich. Rwth Aachen University; AlemaniaFil: Perello, Analia Edith. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentin

    Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data

    No full text
    In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Net- work (AMON) has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) observatory and the Astronomy with a Neutrino Telescope and Abyss environ- mental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between July 2015 and February 2020 with a livetime of 4.39 years. Over this time period, 3 coincident events with an estimated false-alarm rate of <1< 1 coincidence per year were found. This number is consistent with background expectations

    Search for dark matter gamma-ray emission from the Andromeda Galaxy with the High-Altitude Water Cherenkov Observatory

    No full text

    A search for dark matter in the Galactic halo with HAWC

    No full text

    Observational Signatures of Particle Acceleration in Supernova Remnants

    No full text
    We evaluate the current status of supernova remnants as the sources of Galactic cosmic rays. We summarize observations of supernova remnants, covering the whole electromagnetic spectrum and describe what these obser- vations tell us about the acceleration processes by high Mach number shock fronts. We discuss the shock modification by cosmic rays, the shape and maximum energy of the cosmic-ray spectrum and the total energy budget of cosmic rays in and surrounding supernova remnants. Additionally, we discuss problems with supernova remnants as main sources of Galactic cosmic rays, as well as alternative sources.Comment: Accepted for publication by Space Science Reviews, 81 page
    corecore