3,724 research outputs found
Strategy for Designing DSM Program after the Restructuring in Korea
To maintain supply adequacy and mitigate price volatility in electricity market, the necessity for obtaining demandside
resource is increasing and obtaining demand-side resource is set as a priority of electricity policy. For this
purpose, we introduce a new DSM mechanism and program development strategies based on customer response
and electricity industry efficiency. Especially we introduced DLC(Direct Load Control) technology via two-way
communication scheme for large customer. This DLC program targets interruptible load that covers large customer
in commercial and industrial sector. This program can retain demand reserve that does not interrupt process in plant
or business along with real-time monitoring load condition of end-use and interrupt load by pre-determined
procedures, if necessary. This analysis shows that electricity boiler, pump, blower, HVAC can save energy during
some time. In addition, developing system to monitor end-use load and interconnecting it with MOS(Market
Operation System) should be established as infrastructure in DSM
Decentralised Learning MACs for Collision-free Access in WLANs
By combining the features of CSMA and TDMA, fully decentralised WLAN MAC
schemes have recently been proposed that converge to collision-free schedules.
In this paper we describe a MAC with optimal long-run throughput that is almost
decentralised. We then design two \changed{schemes} that are practically
realisable, decentralised approximations of this optimal scheme and operate
with different amounts of sensing information. We achieve this by (1)
introducing learning algorithms that can substantially speed up convergence to
collision free operation; (2) developing a decentralised schedule length
adaptation scheme that provides long-run fair (uniform) access to the medium
while maintaining collision-free access for arbitrary numbers of stations
Sorting live stem cells based on Sox2 mRNA expression.
PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner
Recommended from our members
‘If you look the part you’ll get the job’: should career professionals help clients to enhance their career image?
This article presents a critical exploration of the role of career professionals in supporting people to reflect on and enhance their appearance, attractiveness and self-presentation (career image). The article is conceptual and based on a review of the broader literature on career success, appearance and attractiveness. It explores the evidence for a relationship between attractiveness and career, and the authors propose a conceptual framework in which career image is comprised of three elements (interpersonal skills, aesthetic presentation and beauty). The paper examines a possible role for career professionals in relation to this and then critically examines this role and concludes with the proposition of a research agenda in this area
Novel Modifications of Parallel Jacobi Algorithms
We describe two main classes of one-sided trigonometric and hyperbolic
Jacobi-type algorithms for computing eigenvalues and eigenvectors of Hermitian
matrices. These types of algorithms exhibit significant advantages over many
other eigenvalue algorithms. If the matrices permit, both types of algorithms
compute the eigenvalues and eigenvectors with high relative accuracy.
We present novel parallelization techniques for both trigonometric and
hyperbolic classes of algorithms, as well as some new ideas on how pivoting in
each cycle of the algorithm can improve the speed of the parallel one-sided
algorithms. These parallelization approaches are applicable to both
distributed-memory and shared-memory machines.
The numerical testing performed indicates that the hyperbolic algorithms may
be superior to the trigonometric ones, although, in theory, the latter seem
more natural.Comment: Accepted for publication in Numerical Algorithm
The Specific Heat of a Ferromagnetic Film.
We analyze the specific heat for the vector model on a -dimensional
film geometry of thickness using ``environmentally friendly''
renormalization. We consider periodic, Dirichlet and antiperiodic boundary
conditions, deriving expressions for the specific heat and an effective
specific heat exponent, \alpha\ef. In the case of , for , by
matching to the exact exponent of the two dimensional Ising model we capture
the crossover for \xi_L\ra\infty between power law behaviour in the limit
{L\over\xi_L}\ra\infty and logarithmic behaviour in the limit
{L\over\xi_L}\ra0 for fixed , where is the correlation length in
the transverse dimensions.Comment: 21 pages of Plain TeX. Postscript figures available upon request from
[email protected]
The SPEAR Instrument and On-Orbit Performance
The SPEAR (or 'FIMS') instrumentation has been used to conduct the first
large-scale spectral mapping of diffuse cosmic far ultraviolet (FUV, 900-1750
AA) emission, including important diagnostics of interstellar hot (10^4 K -
10^6 K) and photoionized plasmas, H_2, and dust scattered starlight. The
instrumentation's performance has allowed for the unprecedented detection of
astrophysical diffuse far UV emission lines. A spectral resolution of 550 and
an imaging resolution of 5' is achieved on-orbit in the Short (900 - 1175 AA)
and Long (1335 - 1750 AA) bandpass channels within their respective 7.4 deg x
4.3' and 4.0 deg x 4.6' fields of view. We describe the SPEAR imaging
spectrographs, their performance, and the nature and handling of their data
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
Nesting properties and anisotropy of the Fermi surface of LuNiBC
The rare earth nickel borocarbides, with the generic formula
NiBC, have recently been shown to display a rich variety of
phenomena. Most striking has been the competition between, and even coexistence
of, antiferromagnetism and superconductivity. We have measured the Fermi
surface (FS) of LuNiBC, and shown that it possesses nesting
features capable of explaining some of the phenomena experimentally observed.
In particular, it had previously been conjectured that a particular sheet of FS
is responsible for the modulated magnetic structures manifest in some of the
series. We report the first direct experimental observation of this sheet.Comment: 4 pages, 4 PS figure
- …