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Abstract In this paper, we propose a tree-based time division multiple access (Tree

TDMA) media access control (MAC) algorithm based on the IEEE 802.15.4 PHY stan-

dard. The method involves the simultaneous use of two algorithms, a time slot allocation

algorithm (TSAA) and a frequency slot allocation algorithm (FSAA), at low power con-

sumption to support voice and data communication to solve the problems afflicting

prevalent MAC protocols in tree topology networks. The TSAA first generates routing

paths through the control channel in a super frame prior to transmitting packets, and

allocates time slots for each node to transmit packets. The FSAA then allocates frequencies

to each path according to the routing paths generated following its application. The

overhearing problem and the funneling effect in TDMA as well as carrier sense multiple

access with collision avoidance (CSMA/CA) MACs are resolved by these two algorithms

because a given node and its neighbors are orthogonal in terms of time and frequency. The

problem of inter-node synchronization is addressed by periodically sending a beacon from

higher to lower nodes, and the issue of low power is solved by leaving unsigned time slots

in an idle state. To test the effectiveness of the proposed algorithm, we used a MATLAB

simulation to compare its performance with that of contention-based CSMA MAC and

non-contention-based TreeMAC in terms of network throughput, network delay, energy

efficiency, and energy consumption. We also tested the performance of the algorithms for

increasing number of nodes and transmission packets in the tree topology network.
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1 Introduction

Early wireless sensor networks (WSNs) were considerably limited in the provision of

services such as voice or multimedia communication because the main function of media

access control (MAC) at the time was to monitor sensor data from devices without

guaranteeing successful or timely delivery. The representative MAC protocol featuring this

characteristic is carrier sense multiple access with collision avoidance (CSMA/CA). It

incurs a significant overhead according to the depth of the relevant tree topology network

and the funneling effect. The funneling effect is typically generated when packets are

transferred from a lower node to a higher one in a tree topology network. It leads to packet

transmission delays and inefficient energy consumption, with the consequence that suc-

cessful and timely delivery cannot be guaranteed. Time division multiple access (TDMA)-

based MAC has recently been proposed to solve the above problem. However, it has not

been widely used in WSNs because it can reduce packet transmission efficiency while

trying to prevent packets from being overheard and adjusting inter-node synchronization

according to the topology at hand.

Among WSNs using CSMA/CA MAC, ZigBee has been widely used. It is based on the

IEEE802.15.4 physical layer (PHY) and the CSMA MAC. It exhibits poor performance in

terms of data transmission efficiency unless the MAC of ZigBee dynamically manages the

channel by designating active and inactive intervals to reduce energy consumption.

Moreover, ZigBee struggles to support voice communication, and invariably incurs a delay

because of limited bandwidth and the delay characteristics of sensor networks. Nonethe-

less, because it can be simply implemented using the IEEE 802.15.4 MAC, and it supports

low energy consumption as well as the star, tree, and mesh topologies, it is among the most

widely used sensor network protocols.

The ZigBee Alliance has recently begun distributing CSMA/CA network-based stan-

dards for automation, remote control, smart energy profiles, ZigBee healthcare, home

automation, input devices, light links, retail services, and telecom services to expand

ZigBee’s field of application in order to compensate for the limited service due to CSMA/

CA. Of these, telecom only provides service between devices. However, research is

underway on providing Voice over IP (VoIP) services that utilize codecs and the Session

Initiation Protocol (SIP).

The commonly used tree topology sensor network is classified into a sink node and a

general node. It is a widely used topology for data monitoring that requires variation from

low to high speed owing to the generation of tree-form traffic while transmitting data from

the general node to the sink node. Traditional MAC protocols, such as ALOHA and

CSMA, that do not have traffic channel control at traffic generation create a funneling

effect [1] that increases traffic congestion as packets approach the sink node in the tree

sensor network by increasing the number of reattempts as well as the backoff time. This

causes a sudden increase in network delay as well as traffic congestion and greater energy

consumption at each node. Therefore, subsequent MAC protocol design aims at a short

duty cycle in order to resolve these issues [2–6].

Unlike these contention-based MACs, non-contention-based time division multiple

access (TDMA) MAC focuses on timely delivery when transmitting sensor data. Repre-

sentative protocols include data gathering MAC (D-MAC) [2], Pattern MAC (PMAC) [3],

Tree Search Resource Auction Multiple Access (TRAMA) [7], Tree MAC (Tree-

MAC) [8], Voice-over-sensor-network (VoSN) MAC [9], Sparse Topology Management

Schemes (SETM) [10], and Modified T-MAC (MT-MAC) [11]. Of these, D-MAC and
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PMAC were designed to reduce transmission delays in data transmission due to operating

time syncing between neighboring nodes. Nodes that collect data using Sensor MAC (S-

MAC) [12] and Timeout MAC (T-MAC) [13] transmit them to the sink node with

improved latency, throughput, efficiency, and node fairness using adaptive time slot

scheduling according to traffic in neighbor nodes.

The distribution election technique [7] has recently been used in the TRAMA protocol.

The technique uses the traffic information of each node to determine an appropriate time

slot for it to transmit data in order to prevent collisions with unicast or broadcast trans-

mission. The advantages and disadvantages of TDMA-based and CSMA-based protocols

have also been studied, and a TDMA/CSMA Hybrid (Z-MAC) [14] that uses distributed

randomized TDMA (DRAND) [15] has been proposed to determine the number of allo-

cated slots for each node.

Z-MAC supports twomodes: low contention level (LCL) and high contention level (HCL)

in a node. Any node can compete for access to a transmission slot in the LCL mode, whereas

the owners and the slots belonging to their one-hop neighbors that are used to transmit data

can only compete for access to the transmitting slot channel in the HCL mode. In these

modes, the slot owners have higher priority than non-owners. However, the funneling effect

in the tree topology networks is not discussed in Z-MAC. This effect is caused by inefficient

processing of concentrated data packets fromdistal nodes to those proximate to the sink node.

Tree-based protocols have recently been proposed to solve these problems [1, 8, 16].

TreeMAC is a TDMA-basedMAC that uses frame-slot schedule assignment (FSA) in tree

topology networks. It involves the assignment of three time slots to each node in a frame to

guarantee reliable transmission and simultaneously prevent the funneling effect that occurs

when collecting data in the sink node. TreeMAC consists of three time slots with a frame,

which is defined as the time cycle where all nodes attributed to a tree can transmit data to the

sink node without interference. Each node assigns frames depending on the data transmitting

demand of its child node, and a frame consists of three slots to send, receive, or sleep for

conflict-free packet scheduling. As a result, thismethod can solve the problem of overhearing

by blocking transmission interference among nodes over a two-hop distance using FSA.

TreeMAC can help avoid collision during packet transmission using FSA, transmit packets

without buffering, and provide high transmission efficiency for the sink node. Despite these

advantages, TreeMAC makes it difficult to combine data packets and filter them, thus

preventing balanced power consumption because the slot of each frame can be in any of the

sleep, transmission, and receive modes. Further, it has a transmission issue whereby the

lowest node only transmits data in the direction of the sink node.

The VoSN MAC, which is a TDMA-based MAC that uses RTP and SIP with the time

division multiple access (TDMA)/time division duplex (TDD) method, has recently been

proposed. It uses an SF of 20 ms to support voice, and provides a pilot channel to sync

nodes, the paging and access channels for down-link and up-link control, respectively, and

six voice traffic channels. However, because this MAC only supports star topology net-

works, it only consists of a coordinator and devices for channel distribution, and hence

needs a gateway to work with the SIP network, which is a heterogeneous network that

supports larger networks [9, 17, 18].

To resolve the issues in contention-based MAC and non-contention-based TDMA

MAC, hybrid MACs comprising two MACs have been proposed in recent research.

Representative protocols include Sparse Topology and Energy Management (STEM) [10],

MT-MAC [11], Energy-efficient and QoS-aware MAC (EQ-MAC) [19], QoS-aware MAC

(Q-MAC) [20], Z-MAC, TDMA based multichannel MAC (TMMAC) [21], Traffic-

adaptive MAC (TRAMA) [7, 22], and self-organizing media access control for sensor
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networks (SMACS) [23, 24]. Although these hybrid MACs improve performance in terms

of network throughput, delay, and so on, they exhibit limited effectiveness in addressing

the funneling effect, overhearing problem, and energy consumption.

In this paper, we propose a Tree TDMA MAC consisting of a TSAA and an FSAA to

compensate for the drawbacks of contention-based MACs, such as the traditional ALOHA

and CSMA, as well as non-contention-based TDMA MACs, and simultaneously support

voice and data using full duplex communication in a tree topology network. Tree TDMA

MAC is a hybrid MAC where the control channel and the traffic channel use CSMA/CA

and TDMA MAC, respectively. The control channel uses CSMA/CA MAC to generate a

routing table for the Ad-hoc On-demand Distance Vector (AODV), and serves as a

transmitting/receiving channel for the association of devices and dispatch-related com-

mands. The traffic channel serves as a communication channel for the transmission and

reception of voice and data using TDMA MAC.

The AODV routing algorithm operates by SF unit and determines the routing path for

packet transmission from source to destination through the TDMA traffic channel. If a

node is not included in the routing path, the SF of that node remains idle to minimize

energy consumption. Once the routing table is updated by the AODV algorithm, the path

for the transmission of packets from source to destination is determined and the slot for the

node along the path is assigned by the TSAA. During this, the unassigned slots remain idle

to minimize energy consumption. On the contrary, if multiple routing paths are required to

transmit multiple packets, each frequency value is assigned by the FSA according to the

routing path to prevent the overhearing problem in the same slot between an owner node

and its neighbors beyond one hop.

Unlike traditional MACs that use only a single frequency, Tree TDMA MAC supports

full-duplex communication multiplexing voice and data while minimizing the funneling

effect and the overhearing problem, and ensuring low power consumption, and timely and

guaranteed delivery because it uses multiple frequencies unlike other traditional MACs.

Furthermore, it improves the efficiency of channels, the irregular data transmission delays

in contention-based WSNs, and the overhearing problem in non-contention- and con-

tention-based MACs without reducing channel capacity. In Tree TDMAMAC, a reason for

having such properties is that it has characteristics such as frequency channel orthogonality

and TDMA-based time channel orthogonality.

The proposed Tree TDMA MAC can be utilized in small-scale military communication

networks or emergency disaster communication networks that require ultra-low power and

a multi-hop environment. It can also be used in the Internet of Things (IoT), which will

require real-time data monitoring in the near future using the characteristics of timely and

guaranteed delivery in a sensor network environment. The remainder of this paper is

organized as follows. In Sect. 2, we propose the protocol design and algorithm of the Tree

TDMA MAC. In Sect. 3, we analyze the performance of our method through an experi-

ment. Finally, we present our conclusions in Sect. 4.

2 Tree TDMA MAC: Principles and Design

The SF structure and slot specification for full duplex transmission of voice and data in a

tree-based topology using Tree TDMA MAC are shown in Fig. 1 and Table 1, respec-

tively. In general, a transmission bandwidth of over 56 Kbps is required to support voice

communication. However, it is difficult to accommodate more than four TDMA channels
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even without overhead, because the sensor network transmission bandwidth in IEEE

802.15.4 is limited to 250 Kbps and the protocol can only support one to three channels if

overhead is considered. A voice codec such as G.729, G.711 and etc. [9, 17, 18] are

typically used to overcome limited transmission bandwidth, and the design of Tree TDMA

MAC in this paper is based on the G.729 voice codec.

As the G.729 codec processes input/output intervals of 20 ms with compression and

decompression, the duration of the SF of the Tree TDMA MAC frame, aBaseSuper-

frameInterval, is set to 1250 in Table 1. This is because a symbol represents 16 ls, and
therefore, 20 ms is equivalent to 1250 symbols in IEEE 802.15.4 PHY. A traffic channel is

designed to have a packet length of 40 bytes, consisting of a payload of 20 bytes, a header

of 10 bytes, and 10 reserved bytes for symbol interference (SI) and redundancy in the

future. The default value of aBaseTrafficDuration is set to 80 symbols, since 80 symbols

are converted into 40 bytes, the default value of aBaseTrafficCount is set to 12 slots, and

hence aTrafficInterval has a value of 960 symbols.

The duration of the beacon message, aBaseBeaconDuration, is set to be able to obtain

information from the synchronization between a given node and neighboring nodes, and its

default value is set to 10 symbols. aBaseControlDuration is the duration of the control

T: Tx
R: Rx

Beacon Traffic 

Superframe 1 Superframe 2 Superframe 3 Superframe 4 ∙∙∙

Active

Guard Time

B C T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 G

Control

TDMACSMA/CA

T5 R5

Superframe N

ActiveInactive Inactive

TDMA TDMA

Fig. 1 Frame structure of Tree TDMA MAC in case of d = 2

Table 1 Configuration of Tree TDMA MAC super fame

Name Value Etc

aBaseSuperframeInterval 1250 symbols 20 ms/(16 ls/1 symbol) = 1250 symbols

aBaseTrafficDuration 80 symbols 40 bytes, 80 symbols 9 16 us = 1.28 ms

aBaseTrafficCount 12 slots

aTrafficInterval 960 symbols 80 symbols/slot 9 12 slots = 960 symbols

aBaseBeaconDuration 10 symbols

aBaseControlDuration 230 symbols

aBaseGuardDuration 50 symbols 25 bytes

aBaseMaxSFDistance 100 Multiple values of 20 ms as

duration of super frame
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channel, and its default value is set to 230 symbols because this channel is used for

transmitting/receiving AODV routing messages, updating network associations,

exchanging information between neighboring nodes, and transmitting short messages that

do not require timely delivery. The guard time is used to correct SF synchronization

between nodes in the tree topology network, and to consider propagation delay and

multiple paths. Hence, the default value of aBaseGuardDuration is set to 50 symbols.

As shown in Fig. 1, controls the active and the inactive slot intervals of SFs to minimize

energy consumption. If the difference in the values of the arithmetic sequence is d, the

active slot of the SF is defined as SFd
a , and is represented by the following equation:

if

d ¼ 1 :

SF1
a 2 f1; 2; 3; . . .Nmaxg

ð1Þ

d ¼ 2 :

SF2
a 2 f1; 3; 5; . . .Nmaxg

ð2Þ

d ¼ 3 :

SF3
a 2 f1; 4; 7; . . .Nmaxg

ð3Þ

d ¼ aBaseMaxSFDistance� 1 :

SFaBaseMaxSFDistance�1
a 2 f1; �Nmaxg

ð4Þ

..

.

d ¼ aBaseMaxSFDistance :

SFaBaseMaxSFDistance
a 2 fNmaxg

ð5Þ

where,

Nmax ¼ roundupðaBaseMaxSFDistance=dÞ ð6Þ

Here, because we assume that the value of d as the distance between two SFs is

1; 2; . . .; dmax, dmax as the maximum value of aBaseMaxSFDistance is set as 100, and the

duration of a SF is 20 ms, we can know that the maximum period of an active SF is 2 s.

A Personal Area Network (PAN) coordinator then receives the cumulative buffer size

information for the packet transmitter from subordinate nodes every 2 s, and the value of

d decreases by one until the maximum buffer size of a node among subordinate nodes in an

active SF becomes 0. If the buffer size of the packet transmitter of this subordinate node

becomes 0, the value of d increases by one until it becomes aBaseMAXSFDistance to

manage QoS.

Figure 2 shows an example of tree topology network using Tree TDMA MAC, and

Fig. 3 shows the channel structure of each node generated according to the topology in

Fig. 2. In Fig. 3, transmit and receive slot are alternately generated in the traffic channel. If

the depth value is odd, the generating order is the transmit slot followed by the receive slot.

If the value is even, the alternately generated order begins with receive followed by

transmit to generate the traffic channel. In general, the duration of the time slot increases in

a tree topology network when approaching a higher sink node, and more time slots are
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required, especially for middle-level nodes where traffic tends to concentrate, as shown in

Fig. 3. This may cause greater congestion and degraded throughput performance in a

many-to-one tree TDMAMAC structures. Therefore, to maximize throughput performance

and reduce congestion, the configuration of routing paths by SF unit should be prioritized,

and it is important to optimally schedule time slots based on the routing paths. Table 2

shows the notation that will be used in this paper.

The topology in Fig. 2, which will be used in this paper, has a structure consisting of 10

nodes in a tree of depth 5. Here, node n1 is used as a PAN coordinator and nodes n2–n10 as

device nodes. The PAN coordinator provides a reference beacon for devices within the

same PAN and synchronizes with other PAN coordinators through a protocol. The device

node receives the beacon signals from the PAN coordinator to maintain SF

n1

n2

n4n3

n5

n7

n6

n9 n10n8

d1

d2

d3

d4

d5

PAN 
Coordinator

Device

Fig. 2 Tree TDMA MAC sample in one-PAN topology

R0C

C

n1, d1

n2, d2

n3, d3

n4, d3

n5, d4

n6, d4

n7, d5

n8, d5

n9, d5

n10, d5

Slot
0

Slot
2

B C T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5

B C T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5

B R0 T0 R1 T1 R2 T2 R3 T3 R4 T4 GR5 T5

B T0

R0

T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5
B T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5C
B C T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5

B

B C T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5

B R0 T0 R1 T1 R2 T2 R3 T3 R4 T4 GR5 T5

C T0 R0 T1 R1 T2 R2 T3 R3 T4 R4 GT5 R5

B R0 T0 R1 T1 R2 T2 R3 T3 R4 T4 GR5 T5

T R

T R

voice 
slot
data
slot

sleep slot

C

C

T: Tranmit
R: Receive

Slot
3

Slot
14

This slot 
is sent 
to the 

next SF

Fig. 3 Example of TSAA in Tree TDMA MAC
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synchronization, and transmits the beacon signal to the lower nodes, an example of TSAA

can be expressed as the path set of each path element in Tree TDMA MAC:

l1 ¼ fl11; l21; l31; l41; l51g ¼ fn11; n22; n33; n45; n57g ð7Þ

l2 ¼ fl12; l22; l32; l42; l52g ¼ fn11; n22; n33; n45; n57g ð8Þ

l3 ¼ fl13; l23; l33; l43; l53g ¼ fn11; n22; n34; n46; n59g ð9Þ

l4 ¼ fl14; l24; l34; l44; l54g ¼ fn11; n22; n34; n46; n59g ð10Þ

When four routing paths to node n11–n
5
7, n

5
7–n

1
1, n

1
1–n

5
9, and n59–n

1
1, according to the path

shown in the tree topology network of Fig. 2, are generated (and entered into the shortest

path table) using the AODV algorithm. The set of paths is defined as l ¼ fl1; l2; l3; l4g. The
path elements of ldi are converted into a time slot for each s

j
ld node according to the TSAA

in the Tree TDMA MAC in Fig. 4, and the system creates a slot assignment table for the

SF of each node.

In Fig. 1, the time slots in these SFs are in one of three states: transmit, receive, and sleep.

Figure 3 shows the consequence of time slots assignment to each node during an SF by the

TSAA of Tree TDMA MAC, when two full duplex voice and two data traffic loads are

generated in this tree topology network. In this process, when an SF of the particular node in

set ldi , which is the set element of routing path l is active, the status of the time slot of the node

that is not in path set ldi is changed to the sleep state, and that of the node in the path set l
d
i is

changed to active. The transceiver is turned off tominimize energy consumptionwhen the SF

is inactive or the slot is in the sleep state even though the SF is active.

On the contrary, each node is assumed to have a buffer required to transmit/receive. For

the case where data transmission occurs in the neighboring node of an owner node at any

given time during packet transmission from source to destination, if the target neighboring

node does not have more receiving slot resources within the same SF, the packet changes

to pending status, as with slot R4 of n3 node in Fig. 3, and can be transmitted only in the

time slot reassigned by the TSAA for the next SF.

Figure 3 shows the consequence of time slots assigned to each node during an SF by the

TSAA of Tree TDMA MAC, when two full duplex voice and two data traffic loads are

generated in this tree topology network. Figure 4 shows a flowchart of the TSAA in Tree

Table 2 Notation used in Tree TDMA MAC

Notation Description

SFm Super Frame assigned as the m-th

dn The depth of node n in the tree topology network

Pn The number of pending packet in the node n

Cn The children set under the node n

Ck
n

The k-th child node under the node n

ndi The node with depth d in the i-th node

ldi The node with depth d in the i-th routing path

s
j
ld

The j-th traffic slot of the node with depth d along the l-th routing path

Bld The data buffer of node with depth d in the l-th routing path
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TDMA MAC for the assignment of time slots to the SFs of nodes along a path when

transmitting a packet from the sync node, which is the PAN coordinator in the tree

topology network of Fig. 2, to the lowest node. The TSAA of Tree TDMA MAC generates

the routing path set l ¼ fl1; l2; l3; l4g using the AODV routing algorithm and assigns time

slots in the following order:

1. In an early stage shown in Fig. 4, all slot S sets assigned to each node are

initialized to 0; their super frame index SF is set to 0 as well, whereas l and d is

initialized to 1; L is the number of maximum paths of l and D is the number of

maximum depths of d.

2. It is assumed that the source and the destination are determined in the node that

requires packet data transmission, and path l is generated, as shown in Fig. 3, by

the shortest path AODV routing algorithm.

3. If packets are not transmitted during an SF, they are saved in the buffer of the

relevant node and transmitted at the next SF.

4. As shown in Fig. 3, if the value of depth d is odd, time slots are generated to send

and receive slot order, otherwise, d is even, time slots are generated to receive and

send orders during an SF.

5. As shown in Fig. 3, if a packet is transmitted from the sync node to a lower node, a

time slot is assigned at path l = 1, depth d = 1, and slot number j = 0, and the slots

for d and d ? 1 are assigned following confirmation that the relevant slot and the

d ? 1-th slot are in use.

max depth D=5, 
max slot J=11,
max path L=4,

max packet number N=40,
S ={Ф}, SF=m

i=1, j=0, m=0, l=1, d=1,n=0

Start

Is  the buffer of     
full ?

Y
m++

d
ll

N

d == odd ?

Y

j++

= 11,j j
ld lds s +

N

== 0 ?1,j j
ld lds s + j=j+2

d++

N

Y

j<=J
Y

l++, n++

l<L

N

Y
N

m++, l=1
d<=DY N

l++

n<=N
Y

N
End

l++

Fig. 4 Tree TDMA MAC frame-slot assignment algorithm along the downlink path
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6. Slots are assigned until the value of depth d becomes the maximum depth value

D of the destination node, and Step 5 is repeated until path l becomes the

maximum path L by increasing the value of l by one.

7. In an early stage shown in Fig. 5, all slot sets S assigned to each node are

initialized to 0; whereas l and d is initialized to 1; and L is the number of maximum

paths of l and D is the number of maximum depths of d.

8. It is assumed that the source and destination are determined in the node that

requires packet data transmission, and that path l is generated, as shown in Fig. 3,

by the shortest path AODV routing algorithm.

9. If packets are not transmitted during an SF, they are saved in the buffer of the

relevant node and transmitted at the next SF.

10. As shown in Fig. 3, if the value of depth d is odd, time slots are generated to send

and receive slot order, otherwise d is even, time slots are generated to receive and

send orders during an SF.

11. As shown in Fig. 3, if a packet is transmitted from the sync node to a lower node,

the time slot is assigned path l = 1, depth d = D, slot number j = 0, and slots for

d and d - 1 are assigned after confirming that the particular slot and d ? 1-th slot

are in use.

12. Slots are assigned until d is 1, and Step 5 is repeated until path l becomes the

maximum path L by increasing the value of l by one.

Max depth D=5, 
Max slot J=11,

Max L of up link path=4,
Max packet number N=40,

S ={Ф}, SF=m

i=1, j=0, m=0, l=1, d=D, n=0

Start

Is  the buffer of     
full ?

Y
m++

d
ll

N

d == odd ?

Y

j++

= 11,j j
ld lds s +

N

== 0 ?1,j j
ld lds s + j=j+2

d--

N

Y

j<=J
Y

l++, n++

l<L

N

Y
N

m++, l=1
d>=1Y N

l++

n<=N
Y

N
End

l++

Fig. 5 Tree TDMA MAC frame-slot assignment algorithm along the uplink path
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13. Once time slot assignment is complete, as shown in Fig. 3, frequency is set as

shown in Fig. 5 in the order F1, F2,...Fmax, according to the order of generation of

packet transmission path l = {l1, l2, l3, l4,...ld}. The PAN coordinator should send

the frequency assignment information to all children nodes in the tree topology

network once the routing path is determined, whereas the maximum value of Fmax

is 16.

14. As shown in Fig. 6, Beacon, Control, and Guard time slot assign the F0 channel

and set the unused time slot to the sleep state.

In general, the overhearing problem in a sensor network occurs when an owner node

transmits packet data to a neighbor. In this process, not only is packet data transmitted from

the owner node to its one-hop neighbor, but also to neighbor nodes more than one hop from

it. In order to solve this problem, TreeMAC assigns three time slots to a frame and three

other time slots, different from those for its own node, to its one-hop neighbor node.

However, this method can cause throughput degradation by reducing the efficiency of the

time slot. Therefore, we use a method whereby a different frequency is assigned to each

path according to the AODV, as shown in Fig. 6.

In this paper, we propose two algorithms—TSAA and FSAA—sto solve the above

problem. Although the TSAA supports time orthogonality between an owner node and

each of its one-hop neighbors, it does not support this among neighbors beyond one hop

from the owner. To solve this issue, we propose the FSAA shown in Fig. 6. It allocates

each frequency value to a different routing path. As a result, frequency orthogonality is

maintained between the owner node and its one-hop neighbors. Hence, using the two

algorithms, overhearing is avoided during packet transmission. At the same time, the

unallocated slots are kept in a sleep state to reduce energy consumption. Moreover, unlike

TreeMAC, Tree TDMA MAC does not require the allocation of three time slots to an SF to

prevent overhearing. Hence, it has superior transmission efficiency to TreeMAC.

By expanding the Tree TDMA MAC proposed in this paper, it is possible to exploit the

tree topology network featuring multiple PAN coordinators, as shown in Fig. 7. If the

multiple PAN coordinators are connected, they can be divided into a Master PAN
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coordinator and several PAN coordinators. The Master PAN coordinator manages infor-

mation transmission to device nodes within the same PAN from other PAN coordinators

and synchronizes with them. A PAN coordinator sends a beacon message to devices,

gathers data, and acts as a transmission gateway for devices within the same PAN.

Assuming that a packet is delivered from node n7 of PAN coordinator #1 to node n9 of

PAN coordinator 3 in a tree topology network of the sort shown in Fig. 7, the total number

of hops is 13, and packet delay is generated by a minimum of 12 hops. In here, the Master

PAN coordinator broadcasts a beacon message to synchronize with neighboring PAN

coordinators or its PAN device. The minimum transmission period is decided by the hop

value of the maximum depth minus one within the Master PAN topology in order to

prevent overhearing of the beacon, as shown in Fig. 8. However, it is impossible for the

Master PAN coordinator to know the maximum depth within each PAN coordinator at the

outset. Thus, in order to solve this problem, the Master PAN coordinator needs to gather

information regarding the maximum depth of the tree topology network from each PAN

coordinator, it obtains information regarding the nodes from each device node following

beacon transmission. The Master PAN coordinator should not broadcast the beacon

message again until the sub-PAN coordinators of the Master coordinator provide infor-

mation regarding the device depths in the tree topology network.

Figure 8 shows an example of broadcasting a beacon message when the period of the SF

is SF1
a , as shown in Fig. 7. Since the maximum depth of the Master PAN coordinator is 5,

the period of the beacon transmitted by the Master PAN coordinator to the overall network

is an arithmetic progression with d ¼ 4. While the PAN coordinators and devices maintain

a receiving state at the beginning, they transmit the beacon message to the lower nodes if

they receive it from the Master PAN coordinator. At this time, if the time slot of each node

is not on its own beacon period, it should minimize standby power by changing these slots

to idle because it does not need to transmit or receive a beacon message.

3 Experimental Method

The first objective of our simulation was to analyze the performance of our proposed

method in terms of network throughput, network energy efficiency, network delay, and

network energy consumption, and compare it with CSMA/CA and TreeMAC in a one-PAN
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topology environment, as shown in Fig. 2. The second objective was to analyze the per-

formance of our Tree TDMA MAC in a multi-PAN topology, as shown in Fig. 7. The

parameters of each MAC were set to be similar to those of the Tree TDMA MAC, as listed

in Tables 3, 4, and 5.

We used MATLAB as simulation tool to analyze the performance of the MACs. In the

case of one-PAN topology, we set the shortest routing path as the routing path, and

assumed that the source and destination nodes–n7 and n9, respectively–intersected if the

source and the destination nodes changed during packet transmission or reception. Fur-

thermore, in the simulation process, we used the parameters listed in Tables 3, 4, and 5 to

create the SF and the channel allocation algorithms. The tree topology network had 10

nodes, as shown in Fig. 2, for ease of implementation.

Since we assumed that the AODV routing algorithm is used in the simulation envi-

ronment of MACs, the routing algorithm does not affect the performance of the MACs.

Hence, we used pre-defined static routing paths instead of implementing the routing
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Fig. 8 Example of beacon broadcasting in multi-PAN topology

Table 3 CSMA-CA simulation
parameters

Parameter Value Etc

Tx max power 7 dBm

Receiver sensitivity -97 dBm

Mode Beacon

BI (Beacon interval) 1250 symbols 1250 symbols(40 ms)

SD (superframe duration) 625 symbols 625 symbols(20 ms)

Data rate 250 kbps

CW (contention window) 2

NB (number of back off) 0

BP (backoff period) 80 symbols
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algorithm. Moreover, the BI, SD, and BP values of the CSMA/CA MAC were set to

generate a frame structure similar to the slot length and cycle of the SF in TreeMAC, in

order to compare its performance with that of Tree TDMA MAC.

Traffic was only generated in the nodes n7 and n9 as Fig. 7 and we increased the data

rate. Since TreeMAC outperformed Funneling-MAC, Z-MAC, and B-MAC [1, 8, 25], we

do not consider the simulation results of these MACs here. In order to calculate the average

values of network throughput, network delay, energy efficiency, and energy consumption

under the same network topology and identical traffic generation conditions, we performed

the simulation 10 times for these items.

In case of multi-PAN topology, as shown in Fig. 7, the channel and the slot allocated

algorithms were implemented by using the simulation parameters in Table 5 for Tree

TDMA MAC. In order to make the simulation easier to implement, we did not implement

AODV routing protocol, as it does not affect the performance of MACs. The simulation

was carried out by increasing the number of hops from 4 to 48 between the specified source

and destination nodes, and by increasing the data rate from 50 to 600 pps.

4 Simulation

4.1 Network Throughput in One-PAN Topology

An important feature of Tree TDMA MAC is that it can increase network throughput by

improving the performance of MAC. In order to achieve this objective, we increased the

data rate from the source to the destination nodes by one packet and calculated network

Table 4 TreeMAC simulation parameters

Parameter Value Etc

Tx max power 7 dBm

Receiver sensitivity -97 dBm

Slot size 1.11 ms

Frame size 3 slots

Cycle size 18 slot 20 ms

Bandwidth demand update interval 10 s

Schedule update interval 8 s

FTSP (flooding time synchronization protocol) message interval 5 s

Table 5 Tree TDMA MAC simulation parameters

Parameter Value Etc

Tx max power 0 dBm

Receiver sensitivity -97 dBm

Beacon and traffic transmission power -15 to 0 dBm

Number of traffic CH 12 Rx: 6, Tx: 6

Control CH 1

Beacon interval 20 ms
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throughput while counting successfully delivered packets within 120 ms without collision.

Tree TDMA MAC generated 50–600 packets per second, which corresponded to 80

symbols, which was 40 bytes on a one-traffic channel. This means that packet transmission

was attempted at a data speed of 16–192 Kbps, and this was reflected in the altered network

throughput according to change in the data transmission rate in Fig. 9.

Figure 9 shows that Tree TDMA MAC outperformed other MACs in terms of network

throughput. Since Tree TDMA MAC allocates slots per SF and transmits packets at the

outset, network throughput increased linearly until the time slot resource of the relevant

node was consumed. Following this, network throughput no longer increased because no

more time slots could be allocated. However, in the case of TreeMAC, since it only allows

half-duplex communication and has smaller slot capacity than Tree TDMA MAC, it

yielded lower network throughput than Tree TDMA. In the case of CSMA/CA, as the

number of packet collisions increased with increasing data rate and re-transmission, it

exhibited the worst results in terms of network throughput.

4.2 Network Delay in One-PAN Topology

Network delay is defined as

d ¼
Pn

i¼1ðtri � tsi Þ
n

; ð11Þ

where d is the average value of network delay, tri is the time of receipt of the i-th packet, tsi
is the transmission time of the i-th packet, and n is the number of packets. Figure 10 shows

that CSMA/CA showed the worst performance in terms of network delay as data rate

increased. This is because it involves contention-based packet transmission, unlike the time

slot-based TreeMAC or Tree TDMA MAC.

Fig. 9 Network throughput versus data rate in One-PAN topology
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The increase in the number of packets in CSMA/CA caused network load to increase

exponentially as packet collision increased. TreeMAC has a tree slot structure consisting of

sending, receiving, and idle states for an SF, with an SF = 3N structure for cycle N. It

allocates different time slots between an owner node and each of its one-hop neighbors.

Thus, TreeMAC has three slots–sending, receiving, and idle state–in an SF to prevent the

overhearing problem. When a packet is eventually transmitted, the sending slot is used to

transmit it and the receiving and two idle slots are left as redundancies. Thus, as shown in

Fig. 10, the sharp network delay increment of TreeMAC is generated at lower data rate

than Tree TDMA MAC using one time slot to transmit a packet.

4.3 Energy Efficiency in One-PAN Topology

In general, increasing energy efficiency is one of the main objectives of MAC protocol

design. Energy efficiency is defined as the ratio of successfully transmitted data packets

over all data transmitted in the tree topology network [17]. The transmitted data packets

include retransmitted packets because no ACK message is received following initial

transmission as well as dropped packets due to an excessive number of retries or pending

packets. However, packet loss due to the loss of the radio path was not considered.

Figure 11 shows the simulation result for energy efficiency for Tree TDMA, TreeMAC,

and CSMA/CA MAC. We see that packet loss did not occur in Tree TDMA MAC until the

traffic channel slot of the middle tree node was expended all because it assigned time slots

prior to packet transmission during an SF. Hence, it maintained 100% energy efficiency up

to 300 pps, where the time slots of the middle tree node were full. Hereafter, when packet

transmission exceeded the time slot capacity of the node where packets were concentrated,

packet retransmission occurred, and hence energy efficiency began to drop drastically.

Fig. 10 Network delay versus data rate in One-PAN topology
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TreeMAC, like Tree TDMA MAC, is TDMA MAC. However, it has the structure of SF

with three slots per SF to prevent packet collision between neighboring nodes. Therefore,

in order to transmit one packet, two slots of three are invariably unusable. This reduces

transmission and energy efficiency.

CSMA MAC checks whether there are empty channel when transmitting data between

parent and child nodes. If the transmission channel is not empty, it stands by for a specified

backoff time until the channel becomes empty. Increased data rate causes collision and

retransmissions, hence increasing backoff time and reducing energy efficiency in com-

parison with TDMA MACs.

4.4 Energy Consumption in One-PAN Topology

As most sensor networks require very low power, the energy consumed by each node while

transmitting or receiving packets is among the important elements when designing a new

MAC in a sensor network. Figure 12 shows the simulation results of energy consumed by

the network as number of packets increased in Tree TDMA, TreeMAC, and CSMA/CA

MAC.

CSMA/CA MAC showed greater energy consumption than the TDMA MACs in the

tree topology network with increasing number of packets. This was because it performs

Clear Channel Assessment (CCA) and random backoff, and hence needs a higher data rate

for packet transmission than other TDMA MACs, Since TreeMAC is a kind of TDMA

MAC and uses time scheduling, it can be operated at lower energy than CSMA/CA.

However, it reaches a point where time slot resources are consumed faster than in Tree

TDMA MAC because it has fewer time slot resources. As a result, TreeMAC showed

similar performance to Tree TDMA MAC at the beginning, but its energy consumption

Fig. 11 Energy efficiency versus data rate in One-PAN topology
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increased more rapidly than that of Tree TDMA MAC as packet transmission rate

increased.

4.5 Network Throughput in Multi-PAN Topology

We saw that the value of L and the distance between source and destination nodes in multi-

PAN topology was proportional to the number of hops. Figure 13 shows the simulation

results for network throughput against data rate according to change in the value of L. It

shows that increase in L caused a decline in network throughput, although it was not

significant. On the contrary, Fig. 13 also shows the simulation result where network

throughput could no longer be increased when it reached the saturation data rate of

200–300 pps and it became difficult to assign more time slot.

4.6 Network Delay in Multi-PAN Topology

Figure 7 shows that the increased value of l and the distance between source and desti-

nation nodes in the multi-PAN topology caused greater network delay than one-PAN

topology. Figure 14 shows that an increment in the L value, which is the maximum path

distance between the source and destination nodes, affects network delay. These results are

typical characteristics of TDMA MACs.

4.7 Energy Efficiency in Multi-PAN Topology

In the multi-PAN topology of Fig. 7 that uses Tree TDMA MAC, when the distance

between the source and destination was L, where L had its lowest value of 4, there was a

sharp decline in network efficiency. The system maintained almost perfect network

Fig. 12 Energy consumption versus data rate in One-PAN topology
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efficiency until the data rate reached 300 pps, following which it decreased drastically with

increasing L, as shown in Fig. 15. These results indicate that the increase in L leads to more

time slots and, hence, more unused time slots. However, if the source and destination nodes

are selected as randomly as in real network environments, energy efficiency according to

increasing L will be less affected than in the simulation.

Fig. 13 Network throughput versus data rate in Multi-PAN topology

Fig. 14 Network delay versus data rate in Multi-PAN topology
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4.8 Energy Consumption in Multi-PAN Topology

Figure 16 shows the simulation results for network consumption versus data rate in multi-

PAN topology according to increasing values of L, where L is the distance between the

source and destination nodes. The hop count depended on the value of L.

Fig. 15 Network efficiency versus data rate in Multi-PAN topology

Fig. 16 Network consumption versus data rate in Multi-PAN topology
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Figure 16 shows that an increase in the value of L led to greater energy consumption

because it increased the number of required nodes for packet transmission, and the data

rate led to energy consumption because it increased the number of packet transmissions in

an SF. The results of the simulation showed that Tree TDMA MAC increased energy

consumption at a slower rate than CSMA/CA MAC and other MACs.

5 Conclusion

In the past, CSMA/CA MACs have been typically used in wireless sensor networks

because of the simplicity of the relevant algorithm and energy-efficient implementation. At

the same time, their implementation leads to low throughput, high congestion, and high

overhead. In particular, the overhead due to an increase in the number of packets pro-

portional to the depths of nodes in tree topology networks renders CSMA/CA MACs

unsuited for voice or real-time communication requiring timely and guaranteed delivery.

TDMA-based MACs have been proposed to solve such problems, but suffer from similar

issues during implementation in real environments because it is difficult to maintain

synchronization with trees of increasing depth, and leads to overhearing between neigh-

boring nodes. In this paper, we proposed Tree TDMA MAC with the TSAA and the FSAA

to solve the above problems. The TSAA solves collision and congestion problems by

allocating time slots before transmitting packets during an SF, and the FSAA provides

frequency orthogonality for each path generated by the AODV algorithm prior to the

transmission of each packet to prevent overhearing that is otherwise inevitable in TDMA

MAC. Moreover, we proposed methods to control the active periods of SFs to implement

internode synchronization while maintaining minimum energy consumption. We con-

ducted network simulations to analyze the performance of our proposed Tree TDMA MAC

and compare it with other MACs in one-PAN topology as well as multi-PAN topology.

Our method outperformed CSMA/CA and TreeMAC in terms of throughput, network

delay, energy efficiency, and energy consumption without incurring overhearing and the

funneling effect. This also showed that the performance of our method does not degrade

with increasing packet transmission path length in multi-PAN topology.
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