5 research outputs found

    The fate of neurons after traumatic spinal cord injury in rats: a systematic review

    Get PDF
    Objective(s): To reach an evidence-based knowledge in the context of the temporal-spatial pattern of neuronal death and find appropriate time of intervention in order to preserve spared neurons and promote regeneration after traumatic spinal cord injury (TSCI). Materials and Methods: The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided systematic review. PubMed and EMBASE were searched (24 October, 2015) with no temporal or linguistic restrictions. Hand-search was performed in the bibliographies of relevant articles. Non-interventional animal studies evaluating time-dependent neuronal death following acute mechanical trauma to the spinal cord were included. We separately evaluated the fate of various populations of neurons including propriospinal neurons, ventral motor neurons, Clarke’s column neurons, and supraspinal neurons. Results: We found 11,557 non-duplicated studies. Screening through the titles and abstracts led to 549 articles, 49 of which met the inclusion criteria. Both necrotic and apoptotic neuronal deaths occur after TSCI, though necrosis is the prominent mechanism. There are differences in the responses of intrinsic neurons of the spinal cord to the TSCI. Also, the extent of neuronal death in the supraspinal neurons depends on the anatomical location of their axons. Conclusion: In order to develop new therapies, selection of the injury model and time of intervention has a crucial role in the efficacy of therapy. In addition, examining the safety and efficacy of an intervention by reliable methods not confounded by the injury-related changes would promote translation of therapies to the clinical application

    Volume Changes After Traumatic Spinal Cord Injury in Animal Studies - A Systematic Review

    Get PDF
    There are limited data on the lesion volume changes following spinal cord injury (SCI). In this study, a meta-analysis was performed to evaluate the volume size changes of the injured spinal cord over time among animal studies in traumatic SCI. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive electronic search of English literature of PubMed and EMBASE databases from 1946 to 2015 concerning the time-dependent changes in the volume of the spinal cord following mechanical traumatic SCI. A hand-search was also performed for non-interventional, non-molecular, and non-review studies. Quality appraisal, data extraction, qualitative and quantitative analyses were performed afterward. Of 11,561 articles yielded from electronic search, 49 articles were assessed for eligibility after reviewing of titles, abstracts, and references. Ultimately, 11 articles were eligible for quantitative synthesis. The ratio of lesion volume to spinal cord total volume increased over time. Avascularity appeared in spinal cord 4 hours after injury. During the first week, the spinal subarachnoid space decreased. The hemorrhagic lesion size peaked in 1 week and decreased thereafter. Significant loss of gray and white matter occurred from day 3 with a slower progression of white matter damage. Changes of lesion extent over time is critical in pathophysiologic processes after SCI. Early avascularity, rapid loss of gray matter, slow progression of white matter damage, and late cavitation are the pathophysiologic key points of SCI, which could be helpful in choosing the proper intervention on a timely basis

    The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes

    No full text
    Background: Lipid and glycemic abnormalities are prevalent in diabetes leading to long term complications. Use of safe and natural foods instead of medications is now considered by many scientists. Objectives: This study aimed at determining the effect of ginger on lipid and glucose levels of patients with type 2 diabetes mellitus. Methods: In a double-blind placebo-controlled trial, 50 patients with type 2 diabetes were randomly allocated to 2 groups of intervention (n = 25) and placebo (n = 25). Each patient received 2000 mg per day of ginger supplements or placebo for 10 weeks. Serum levels of fasting blood sugar (FBS), total cholesterol (TC), triacylglycerol (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and glycosylated hemoglobin (HbA1C) were analyzed. Daily dietary intakes and anthropometric parameters were also determined. Results: Data from 45 patients were analyzed (23 patients in the ginger group and 22 patients in the control group) at the end of the study. Ginger consumption significantly reduced serum levels of fasting blood glucose (-26.30 ± 35.27 vs. 11.91 ± 38.58 mg/dl; P = 0.001) and hemoglobin A1C (-0.38 ± 0.35 vs. 0.22 ± 0.29 %; P < 0.0001) compared to the placebo group. Ginger consumption also reduced the ratio of LDL-C/HDL-C (2.64 ± 0.85 vs. 2.35 ± 0.8; P = 0.009). However, there was no significant change in serum concentrations of triglycerides, total cholesterol, LDL-C, and HDL-C due to the ginger supplements. Conclusions: The current results showed that ginger could reduce serum levels of fasting blood glucose and hemoglobin A1C in patients with diabetes

    The Effects of Ginger on Fasting Blood Sugar, Hemoglobin A1c, and Lipid Profiles in Patients with Type 2 Diabetes

    No full text
    Background: Lipid and glycemic abnormalities are prevalent in diabetes leading to long term complications. Use of safe and natural foods instead of medications is now considered by many scientists. Objectives: This study aimed at determining the effect of ginger on lipid and glucose levels of patients with type 2 diabetes mellitus. Methods: In a double-blind placebo-controlled trial, 50 patients with type 2 diabetes were randomly allocated to 2 groups of intervention (n = 25) and placebo (n = 25). Each patient received 2000 mg per day of ginger supplements or placebo for 10 weeks. Serum levels of fasting blood sugar (FBS), total cholesterol (TC), triacylglycerol (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and glycosylated hemoglobin (HbA1C) were analyzed. Daily dietary intakes and anthropometric parameters were also determined. Results: Data from 45 patients were analyzed (23 patients in the ginger group and 22 patients in the control group) at the end of the study. Ginger consumption significantly reduced serum levels of fasting blood glucose (-26.30 ± 35.27 vs. 11.91 ± 38.58 mg/dl; P = 0.001) and hemoglobin A1C (-0.38 ± 0.35 vs. 0.22 ± 0.29 %; P < 0.0001) compared to the placebo group. Ginger consumption also reduced the ratio of LDL-C/HDL-C (2.64 ± 0.85 vs. 2.35 ± 0.8; P = 0.009). However, there was no significant change in serum concentrations of triglycerides, total cholesterol, LDL-C, and HDL-C due to the ginger supplements. Conclusions: The current results showed that ginger could reduce serum levels of fasting blood glucose and hemoglobin A1C in patients with diabetes
    corecore