427 research outputs found

    Photoemission kinks and phonons in cuprates

    Full text link
    One of the possible mechanisms of high Tc superconductivity is Cooper pairing with the help of bosons, which change the slope of the electronic dispersion as observed by photoemission. Giustino et al. calculated that in the high temperature superconductor La1.85Sr0.15CuO4 crystal lattice vibrations (phonons) should have a negligible effect on photoemission spectra and concluded that phonons do not play an important role. We show that the calculations employed by Giustino et al. fail to reproduce huge influence of electron-phonon coupling on important phonons observed in experiments. Thus one would expect these calculations to similarly fail in explaining the role of electron-phonon coupling for the electronic dispersion.Comment: To appear in Nature as a Brief Communiction Arisin

    Interplay between charge-lattice interaction and strong electron correlations in cuprates: phonon anomaly and spectral kinks

    Full text link
    We investigate the interplay between strong electron correlations and charge-lattice interaction in cuprates. The coupling between half breathing bond stretching phonons and doped holes in the t-t'-J model is studied by limited phonon basis exact diagonalization method. Nonadiabatic electron-phonon interaction leads to the splitting of the phonon spectral function at half-way to the zone boundary at qs={(±π/2,0),(0,±π/2)}\vec{q}_s=\{(\pm \pi / 2, 0), (0, \pm \pi / 2) \} and to low energy kink feature in the electron dispersion, in agreement with experimental observations. Another kink due to strong electron correlation effects is observed at higher energy, depending on the strength of the charge-lattice coupling.Comment: 4 pages, 3 figure

    Electron-phonon anomaly related to charge stripes: static stripe phase versus optimally-doped superconducting La1.85Sr0.15CuO4

    Full text link
    Inelastic neutron scattering was used to study the Cu-O bond-stretching vibrations in optimally doped La1.85Sr0.15CuO4 (Tc = 35 K) and in two other cuprates showing static stripe order at low temperatures, i.e. La1.48Nd0.4Sr0.12CuO4 and La1.875Ba0.125CuO4. All three compounds exhibit a very similar phonon anomaly, which is not predicted by conventional band theory. It is argued that the phonon anomaly reflects a coupling to charge inhomogeneities in the form of stripes, which remain dynamic in superconducting La1.85Sr0.15CuO4 down to the lowest temperatures. These results show that the phonon effect indicating stripe formation is not restricted to a narrow region of the phase diagram around the so-called 1/8 anomaly but occurs in optimally doped samples as well.Comment: to appear in J. Low Temp. Phy

    Thermodynamics and Evaporation of the 2+1-D Black Hole

    Full text link
    The properties of canonical and microcanonical ensembles of a black hole with thermal radiation and the problem of black hole evaporation in 3-D are studied. In 3-D Einstein-anti-de Sitter gravity we have two relevant mass scales, mc=1/Gm_c=1/G, and mp=(2Λ/G)1/3m_p=(\hbar^2\Lambda/G)^{1/3}, which are particularly relevant for the evaporation problem. It is argued that in the `weak coupling' regime Λ<(G)2\Lambda<(\hbar G)^{-2}, the end point of an evaporating black hole formed with an initial mass m0>mpm_0>m_p, is likely to be a stable remnant in equilibrium with thermal radiation. The relevance of these results for the information problem and for the issue of back reaction is discussed. In the `strong coupling' regime, Λ>(G)2\Lambda>(\hbar G)^{-2} a full fledged quantum gravity treatment is required. Since the total energy of thermal states in anti-de Sitter space with reflective boundary conditions at spatial infinity is bounded and conserved, the canonical and microcanonical ensembles are well defined. For a given temperature or energy black hole states are locally stable. In the weak coupling regime black hole states are more probable then pure radiation states.Comment: 11 pages, TAUP 2141/94, Late

    Influence Of The Qd Luminescence Quantum Yield On Photocurrent In Qd/graphene Hybrid Structures

    Get PDF
    Photoinduced changes in luminescent and photoelectrical properties of the hybrid structure based on CdSe/ZnS QDs and multilayer graphene nanobelts were studied. It was shown that an irradiation of the structures by 365 nm mercury line in doses up to 23 J led to growth of QD luminescent quantum yield and photocurrent in the QD/graphene structures. This confirms the proximity of the rates of the QD luminescence decay and energy/charge transfer from QDs to graphene, and opens an opportunity to photoinduced control of the photoelectric response of the graphene based hybrid structures with semiconductor quantum dots.9884Conference on Nanophotonics VIAPR 03-07, 2016Brussels, BELGIU

    C-axis electronic Raman scattering in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+\delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increases. In the superconducting state, a coherence 2\Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.Comment: 12 pages, REVTEX, 3 postscript figure

    The oral microbiome in human immunodeficiency virus (HIV)-positive individuals

    Get PDF
    This study was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (HR1155A). This research utilized Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates

    Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films

    Full text link
    In Raman spectra of cuprate superconductors the gap shows up both directly, via a redistribution of the electronic background, the so-called "2Delta peaks", and indirectly, e.g. via the renormalization of phononic excitations. We use a model that allows us to study the redistribution and the related phonon self-energy effects simultaneously. We apply this model to the B_1g phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution enables us to investigate under- and overdoped samples. While various self-energy effects can be explained by the strength and energy of the 2\Delta peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure
    corecore