13 research outputs found
Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review
Background: Several clinical trials, as well as observational statistics, have exhibited that the advantages of antiretroviral [ARV] treatment for humans with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome HIV/AIDS exceed their risks. Therapeutic drug monitoring [TDM] plays a key role in optimization of ARV therapy. Determination of ARV's in plasma, blood cells, and other biological matrices frequently requires separation techniques capable of high effectiveness, specific selectivity and high sensitivity. High-performance liquid chromatography [HPLC] coupled with ultraviolet [UV], Photodiode array detectors [PDA], Mass spectrophotometer [MS] detectors etc. are the important quantitative techniques used for the estimation of pharmaceuticals in biological samples. Objective: This review article is aimed to give an extensive outline of different bio-analytical techniques which have been reported for direct quantitation of ARV's. This article aimed to establish an efficient role played by the TDM in the optimum therapeutic outcome of the ARV treatment. It also focused on establishing the prominent role played by the separation techniques like HPLC and UPLC along with the detectors like UV and Mass in TDM. Methods: TDM is based on the principle that for certain drugs, a close relationship exists between the plasma level of the drug and its clinical effect. TDM is of no value if the relationship does not exist. The analytical methodology employed in TDM should: 1) distinguish similar compounds; 2) be sensitive and precise and 3) is easy to use Results: This review highlights the advancement of the chromatographic techniques beginning from the HPLC-UV to the more advanced technique like UPLC-MS/MS. TDM is essential to ensure adherence, observe viral resistance and to personalize ARV dose regimens. It is observed that the analytical methods like immunoassays and liquid chromatography with detectors like UV, PDA, Florescent, MS, MS/MS and Ultra performance liquid chromatography (UPLC)-MS/MS have immensely contributed to the clinical outcome of the ARV therapy. Assay methods are not only helping physicians in limiting the side effects and drug interactions but also assisting in monitoring patient's compliance. Conclusion: The present review revealed that HPLC has been the most widely used system irrespective of the availability of more sensitive chromatographic technique like UPLC.VRAID (ex DIPUC
Effects of aerobic and resistance exercise intensities on 24-hours blood pressure in normotensive women
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Dynamic Hardy-type inequalities with non-conjugate parameters
Within this paper, we derive entire series of new Hilbert and Hardy-Hilbert form integral inequalities with non-conjugate exponents on time scales. Firstly, we demonstrate and discuss two general equivalent inequalities of this type, as well as their corresponding reverse inequalities. We also extend Hilbert and Hardy-Hilbert inequalities in their most general form. The results obtained are then applied to a kernel of special Hardy form. Our results as special cases extend some of the dynamic inequalities achieved on time scales and also include some integral inequalities as special cases when T=R
