27 research outputs found

    Pengaruh Kepemilikan Institusional, Struktur Aset, Profitabilitas, Pertumbuhan Perusahaan Terhadap Kebijakan Hutang pada Perusahaan Manufaktur yang Terdaftar di BEI Periode 2014 - 2018

    Get PDF
    This research aims to examine the effect of institutional ownership (INST), asset structure (FAR), profitability (ROE) and company growth (GROWTH) on debt policies in manufacturing listed on the Indonesia Stock Exchange in the 2014-2018. The sample in this study were 73 companies. The analysis technique in this study uses the classic assumption test and multiple linear regression. The results showed that institutional ownership (INST), asset structure (FAR), company growth (GROWTH) had a significant positive effect on debt policy, while profitability (ROE) had a significant negative effect on debt policy. Keywords : institutional ownershi, asset structure, profitability and company growt

    Low-cost fabrication of optical waveguides, interconnects and sensing structures on all-polymer-based thin foils

    Get PDF
    Micro-optical sensors based on optical waveguides are widely used to measure temperature, force and strain but also to detect biological and chemical substances such as explosives or toxins. While optical micro-sensors based on silicon technology require complex and expensive process technologies, a new generation of sensors based completely on polymers offer advantages especially in terms of low-cost and fast production techniques. We have developed a process to integrate micro-optical components such as embedded waveguides and optical interconnects into polymer foils with a thickness well below one millimeter. To enable high throughput production, we employ hot embossing technology, which is capable of reel-to-reel fabrication with a surface roughness in the optical range. For the waveguide fabrication, we used the thermoplastic polymethylmethacrylate (PMMA) as cladding and several optical adhesives as core materials. The waveguides are characterized with respect to refractive indices and propagation losses. We achieved propagation losses are as low as 0.3 dB/cm. Furthermore, we demonstrate coupling structures and their fabrication especially suited to integrate various light sources such as vertical-cavity surface-emitting lasers (VCSEL) and organic light emitting diodes (OLED) into thin polymer foils. Also, we present a concept of an all-polymer and waveguide based deformation sensor based on intensity modulation, which can be fabricated by utilizing our process. For future application, we aim at a low-cost and high-throughput reel-to-reel production process enabling the fabrication of large sensor arrays or disposable single-use sensing structures, which will open optical sensing to a large variety of application fields ranging from medical diagnosis to automotive sensing. © 2016 SPIE.DFG/CRC/PlanO

    Digital mirror devices and liquid crystal displays in maskless lithography for fabrication of polymer-based holographic structures

    Get PDF
    Polymer-based holographic and diffractive optical elements have gained increasing interest due to their potential to be used in a broad range of applications, such as illumination technology, micro-optics, and holography. We present a production process to fabricate polymer-based diffractive optical elements and holograms. The process is based on maskless lithography, which is used to fabricate optical elements in photoresist. We discuss several lab-level lithography setups based on digital mirror devices and liquid crystal devices with respect to illumination efficiency, resolution, and contrast. The entire optical setup is designed with emphasis on low-cost components, which can be easily implemented in an optical research lab. In a first step, a copy of the microstructures is replicated into optical polymeric materials by means of a soft stamp hot embossing process. The soft stamp is made from polydimethylsiloxan, which is coated onto the microstructure in the photoresist. The hot embossing process is carried out by a self-made and low-cost hot embossing machine. We present confocal topography measurements to quantify the replication accuracy of the process and demonstrate diffractive optical elements and holographic structures, which were fabricated using the process presented. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE).DFG/CRC/PlanOSGerman Federation of Industrial Research Associations (AiF)/EFB ZN 50

    Lab-level and low-cost fabrication technique for polymer based micro-optical elements and holographic structures

    Get PDF
    Polymer based diffractive optical elements have gained increasing interest due to their potential to be used in various applications such as illumination technology, micro optics and holography. We present a novel production process to fabricate polymer based diffractive optical elements and holograms. The process is based on maskless lithography, which is used to fabricate optical elements in photoresist. We discuss several lab-made lithography setups based on digital mirror devices and liquid crystal devices with respect to light efficiency, resolution and contrast. The whole optical setup is designed with an emphasis on low-cost setups, which can be easily implemented in an optical research lab. In a subsequent step, a copy of the microstructures is easily replicated into optical polymeric materials by means of a soft stamp hot embossing process step. The soft stamp is made from Polydimethylsiloxan, which is coated onto the microstructure in resist. The hot embossing process is carried out by a self-made and low-cost hot embossing machine. We present confocal topography measurements to quantify the replication accuracy of the process and demonstrate diffractive optical elements and holographic structures, which were fabricated using the process presented. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.DFG/CRC/PlanOSGerman Federation of Industrial Research Associations (AiF)/EFB ZN 50

    Direct hot embossing of microelements by means of photostructurable polyimide

    Get PDF
    While automatic hot embossing systems are available for large- and small-scale productions of polymeric devices, one of the process challenges remains to be the manufacturing of precise, durable, and yet inexpensive hot embossing stamps. The use of metallic stamps manufactured by electroplating a photoresist pattern or by precision milling and their replication into silicone molds with UV-lithography, electroplating, and molding techniques is state of the art. Yet, there have been few, if any, thriving attempts to directly emboss polymers by means of bare photoresists, and in particular polyimide-based photoresists, without transferring the photoresist patterns into a different stamp material. We conduct a proof-of-concept by developing hot embossing stamps based on photosensitive polyimide. We focus primarily on the reliability of the aforementioned stamps throughout the hot embossing cycle and the fidelity of pattern transfer onto polymeric films for different microstructural patterns. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).DFG/CRC/Planar Optronic System

    Automated Misalignment Compensating Interconnects Based on Self-Written Waveguides

    Get PDF
    Optical interconnects are the key components for integrated optics to link photonic integrated circuits or to connect external elements such as light sources and detectors. However, misalignment of the optical elements contained and its compensation is a remaining challenge for integrated optical devices. We present a novel method to stablish rigid interconnects based on a 2-wavelength self-written waveguide process which automatically compensates for misalignment. We exemplarily demonstrate the capability of our process by writing interconnects between two multimode fibers as well as hot-embossed integrated polymer waveguides and a bare laser diode chip. The coupling Efficiency of the interconnects obtained is analyzed with respect to misalignment.We found that coupling losses are as low as 1.3 dB if a lateral misalignment lies within a 10 μm interval, which is achieved by commercially available pick-and-place machines. Our approach is easily combined with high-throughput techniques such as hot embossing and enables low-cost production of interconnects even for mass fabrication in future applications

    Replication of planar polymer micro-optical waveguides and components

    Get PDF
    Photonic integrated circuits represent a topic of increasing interest in the research community. Its attractiveness is linked to the potential wide range of applications in the elds of optical telecommunication, photonic computing and optical sensing. Parallel to semiconductor and silicon photonics, polymerbased optical integrated circuits are the focus of intense research due to the immense versatility in material properties and fabrication techniques of polymers compared to their semiconductor counterparts. This dissertation was conducted in the framework of the collaborative research center "Planar Optronic Systems" (PlanOS), which aims at developing novel low-cost fabrication techniques and applications for planar polymer-foil integrated optical circuits and sensors. This thesis specifically investigates the use of the hot embossing process to create such micro-optical and photonic structures in thin polymer films. To fabricate waveguide-based photonic elements on exible thermoplastic polymer substrates, a thermal imprinting process suited for replication in thin polymer films was developed and transferred to a commercial hot embossing system. Various stamp materials and fabrication techniques were investigated. The replication quality was optimized through process parameter studies and integration of custom embossing machine parts. The resulting replicated foils were then used as waveguide cladding. For the waveguide core, various thermosetting and UV curing polymer materials were tested. To deposit core materials, a fabrication process based on two-step hot embossing, as well as a combination of hot embossing and doctor blading, were examined. The quality of produced waveguides was investigated through the measurement of refractive index, propagation losses, crosstalk and bend losses. The experimental results demonstrate low propagation and bend losses and excellent signal confinement. Coupling structures in the form of grating arrays were then integrated in the obtained low-loss optical waveguides through di erent approaches. First, couplers and waveguides were fabricated on di erent polymer sheets and later combined through thermal and adhesive bonding. Alternatively, a single-step integration process based on a silicon stamp having waveguide-integrated grating couplers was demonstrated. The obtained samples were used to fabricate hybrid and full-polymer optical transmission links. As an application for the waveguide manufacturing technique, optical beam splitters with di erent splitting properties were designed, fabricated and characterized with respect to their excess losses and power imbalance. The achieved components exhibit low excess losses and high output uniformity. Furthermore, optical strain sensors were successfully fabricated. The fabrication of microresonators through hot embossing was also pursued in the course of this work. A novel two-step replication process was developed, which is based on the replication of micro-pillars and the attening of their top surface to obtain disk shapes typical for resonator structures. A targeted modification of resonator dimensions and shape was demonstrated through an adequate parameter study

    Siapakah Sebenarnya RATU BALQIS?

    No full text

    Fabrication and Sensing Applications of Multilayer Polymer Optical Waveguides

    Get PDF
    For sensing applications in structural health monitoring, process technology or life sciences polymer micro-optical sensors are highly promising as they offer several advantages in comparison to other sensor types. In this work, a fabrication process of low-cost planar polymer optical waveguides based on hot embossing and doctor blading is presented. Such waveguides represent one of the main building blocks of micro-optical systems. The refractive index and propagation losses of several waveguide materials are characterized. In order to increase the integration density of optical components, the fabrication of multilayer waveguides is investigated. Finally, potential applications of the fabricated waveguides are outlined
    corecore