49 research outputs found

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Z-path trajectory mechanism for mobile beacon-assisted localization in wireless sensor networks

    Get PDF
    A wireless sensor network consists of many sensors that communicate wirelessly to monitor a physical region. In many applications such as warning systems or healthcare services, it is necessary to enhance the captured data with location information. Determining the coordinates of the randomly deployed sensors is known as the problem of localization. A promising solution for statically deployed sensors is to benefit from a mobile beacon-assisted localization. The main challenge is planning an optimum path for the mobile beacon to ensure the full coverage, increase the accuracy of the estimated position and decrease the required time for localization of resource-constrained sensors. So, this research aims at developing a superior trajectory mechanism for mobile beacon-assisted localization to help unknown sensors to efficiently localize themselves. To achieve this purpose; first, a novel trajectory named Z-path is proposed to guarantee fully localized deployed sensors with higher precision since the path reduces collinear beacon positions and promises shorter localization time; second, Z-path transmission power adjustment scheme named Zpower is developed to dynamically and optimally adjust the transmission power for a reliable transmission while conserving the energy consumption for localization by mobile beacon and unknown sensors; third, Z-path obstacle-handling trajectory mechanism is designed to improve the effectiveness of the proposed path toward obstacles which obstruct the path. Finally, the proposed Z-path obstacle handling mechanism is integrated with the developed power adjustment scheme to improve the energy efficiency of the designed obstacle tolerance mechanism. The performance of the proposed trajectory is evaluated by comparing the efficiency with five benchmark trajectories in terms of localization success, accuracy, energy efficiency, time and ineffective position rate, which is a newly introduced metric by this research to measure the collinearity of the trajectories. Simulation results show that Z-path has successfully localized all 250 deployed sensors with higher precision by at least 5.88% improvement than Localization with a Mobile Anchor based on Trilateration (LMAT) trajectory and 58% improvement than random way point. It also serves as a benchmark path with 93 ineffective positions per node localization as compared with LMAT as a second efficient path by 100 collinear positions and faster trajectory for localization. Furthermore, results revealed that Z-power accomplishes better performance in terms of energy consumption as an average 34% for unknown sensors and 25% for mobile beacon than Z-path. In case of obstacle tolerance mechanism, it ensures higher localization performance in terms of accuracy, time and success around 37.5%, 13% and 11% respectively, as compared to Z-path at the presence of obstacles. The handling mechanism integrated with the power control scheme has reduced energy consumption and improved ineffective position rate compared with Z-path handling trajectory by 35.7% and 54.4%, respectively

    Investigating the influencing factors on trust and professional skepticism in the relationship between the auditor and the client firms’ managers

    Get PDF
    The current study investigates how interpersonal trust between the auditor and the client firms’ managers affects the auditor's professional skepticism in Iraq. In the qualitative part of the research, 20 auditors and client firms’ managers were interviewed. In the qualitative section, the interviews conducted were analyzed using MAXQDA software. The statistical population includes two groups: all auditors, 1735 participants until the end of 2022, and all senior managers and managers of public companies, private companies, and other organizations. The statistical sample size is 314. The data collection instrument was Aschauer et al.'s (2017) questionnaire, which was analyzed using PLS3 software. The findings support the idea that there is a positive correlation between the degree of skepticism towards the auditing profession and the degree to which corporate managers and auditors are trusted. Perceived trust between auditors and managers and skepticism of auditors' professions are not significantly correlated with the length of the auditor's contact with the client. The relationship between auditors' and managers' trust in them and their skepticism of the auditing profession is not also significantly impacted by the supply of non-audit services

    Fundamental Metrics for Wireless Sensor Networks localization

    Get PDF
    During the last decade, Localization in wireless sensor networks (WSNs) is a broad topic that has received considerable attention from the research community. The approaches suggested to estimate location are implemented with different concepts, functionalities, scopes and technologies. This paper introduces a methodological approach to the evaluation of localization algorithms and contains a discussion of evaluation criteria and performance metrics followed by statistical/ empirical simulation models and metrics that affect the performance of the algorithms and hence their assessment. The major contribution of this paper is to analyze and identify relevant metrics to compare different approaches on the evaluation of localization schemes.DOI:http://dx.doi.org/10.11591/ijece.v2i4.24

    Design-oriented stress–strain model for RC columns with dual FRP- steel confinement mechanism

    Get PDF
    Many research studies have been conducted to evaluate confinement-induced enhancements on the mechanical properties of FRP (fiber-reinforced polymers)-confined plain concrete elements subjected to axial compressive loading, leading to the development of extensive predictive models. Nevertheless, experimental stress–strain results for FRP-confined RC columns (FCRC) have demonstrated some behavioural features that cannot be simulated accurately through this kind of model, developed exclusively for FRP-confined concrete columns (FCC). In this paper, a new design-oriented stress–strain model is proposed for the prediction of load-carrying capacity versus axial strain relationship of FCRC. For this purpose, a new parabolic stress–strain expression is developed for calculating the first branch of FCRC’s response up to the transition zone, followed by a linear function. New formulations are proposed to determine the first branch’s stress–strain gradient, transition zonerelated information and the second branch’s slope, calibrated using a large test database of FCRC. The proposed design-oriented model is capable of simulating accurately the combined influence of the dual FRP and steel confinement on load-carrying capacity versus axial strain relationship of FCRC. Lastly, the capability of this model is validated by comparison to existing experimental data of FCRC and those obtained from some of existing models in the literature.This study is a part of the project ‘‘Sticker –Innovative technique for the structural strengthening based on using CFRP laminates with multifunctional attributes and applied with advanced cement adhesives’’, with the reference POCI-01-0247-FEDER-039755. This work was partly financed by FCT / MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), Portugal under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE, Portugal under reference LA/P/0112/2020. The first author also acknowledges the support provided by FCT, Portugal PhD individual fellowship 2019 with the reference of “SFRH/BD/148002/2019”

    Analytical model to predict dilation behavior of FRP confined circular concrete columns subjected to axial compressive loading

    Get PDF
    Experimental research and real-case applications are demonstrating that the use of fiber–reinforced polymer (FRP) composite materials can be a solution to substantially improve circular cross section concrete columns in terms of strength, ductility, and energy dissipation. The present study is dedicated to developing a new model for estimating the dilation behavior of fully and partially FRP-based confined concrete columns under axial compressive loading. By considering experimental observations and results, a new relation between secant Poisson's ratio and axial strain is proposed. In order for the model to be applicable to partial confinement configurations, a confinement stiffness index is proposed based on the concept of confinement efficiency factor. A new methodology is also developed to predict the ultimate condition of partially FRP confined concrete taking into account the possibility of concrete crushing and FRP rupture failure modes. By comparing the results from experimental tests available in the literature with those determined with the model, the reliability and the good predictive performance of the developed model are demonstrated.project ‘‘StreColesf_Innovative technique using effectively composite materials for the strengthening of rectangular cross section reinforced concrete columns exposed to seismic loadings and fire’’, with the reference POCI-01-0145-FEDER-029485

    Analytical model to predict axial stress-strain behavior of heat-damaged unreinforced concrete columns wrapped by FRP jacket

    Get PDF
    Although there are several confinement models to obtain analytically the axial stress-strain response (fc − Δc) of concrete columns wrapped with fiber-reinforced-polymer (FRP) jacket at ambient conditions, a reliable designoriented model to determine the fc − Δc of heat-damaged concrete columns post-confined with FRP is still lacking in the literature. This study aims to address this research gap, by proposing a formulation that predicts the favourable effects of FRP confinement on concrete elements previously exposed to high temperatures. This model proposes a closed-form formulation to derive a fc − Δc expression, including a set of strength and strain submodels to calculate the stress/strain information at transition and ultimate points defining the stress-strain response. To develop the model and calibrate its key components by data analysis of statistical treatment techniques, a large test database of FRP confined unheated/heat-damaged concrete of circular/square crosssection consisting of 1914 specimens was collected. The proposed design-oriented model is able to demonstrate the influence of pre-existing thermal damage on the axial fc − Δc relationship, whose reliability is revealed comprehensively through predicting data from several experimental heat-damaged concrete specimens confined with FRP systems.This study is a part of the project ‘‘Sticker –Innovative technique for the structural strengthening based on using CFRP laminates with multifunctional attributes and applied with advanced cement adhesives’’, with the reference POCI-01-0247-FEDER-039755. The first author also acknowledges the support provided by FCT PhD individual fellowship 2019 with the reference of “SFRH/BD/148002/2019”.This study is a part of the project "Sticker - Innovative technique for the structural strengthening based on using CFRP laminates with multifunctional attributes and applied with advanced cement adhesives " , with the reference POCI-01-0247-FEDER-039755. The firs author also acknowledges the support provided by FCT PhD individual fellowship 2019 with the reference of " SFRH/BD/148002/2019 "

    Unified compressive strength and strain ductility models for fully and partially FRP-confined circular, square, and rectangular concrete columns

    Get PDF
    Determination of fiber-reinforced polymer (FRP) confinement-induced improvements in the mechanical properties of concrete columns under compression is a current concern, particularly if partial confinement applied on a noncircular cross-sectional shape is to be considered. Although several design-oriented predictive formulations have been proposed for the calculation of axial strength and axial strain ductility of FRP-confined concrete, their applications are, in general, limited to a specific cross-sectional shape (circular, square, or rectangular cross section) and a certain confinement arrangement (fully or partially confining system). Accordingly, the aim in this study is to establish new unified strength and ductility models for concrete columns of circular or noncircular cross sections with fully or partially confining FRP systems. To achieve the highest level of predictive performance through a nonlinear regression technique, two datasets, consisting of 2,117 test data of peak strength and 2,050 test data of strain ductility, available in the literature, were collected. The dominance degrees of size effect, sectional noncircularity (corner radius ratio), cross-sectional aspect ratio, and confinement configuration type on confinement effectiveness were evaluated and reflected in the development of these regression-based models. Through predictions of test data compiled in the datasets and a comparison with the performances of available predictive models, the proposed unified formulations demonstrated a high level of reliability and were found to be proper for design purposes.FCT -Fundação para a CiĂȘncia e a Tecnologia(SFRH/BD/148002/2019
    corecore