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ABSTRACT

A wireless sensor network consists of many sensors that communicate

wirelessly to monitor a physical region. In many applications such as warning systems

or healthcare services, it is necessary to enhance the captured data with location

information. Determining the coordinates of the randomly deployed sensors is known

as the problem of localization. A promising solution for statically deployed sensors is

to benefit from a mobile beacon-assisted localization. The main challenge is planning

an optimum path for the mobile beacon to ensure the full coverage, increase the

accuracy of the estimated position and decrease the required time for localization

of resource-constrained sensors. So, this research aims at developing a superior

trajectory mechanism for mobile beacon-assisted localization to help unknown sensors

to efficiently localize themselves. To achieve this purpose; first, a novel trajectory

named Z-path is proposed to guarantee fully localized deployed sensors with higher

precision since the path reduces collinear beacon positions and promises shorter

localization time; second, Z-path transmission power adjustment scheme named Z-
power is developed to dynamically and optimally adjust the transmission power for

a reliable transmission while conserving the energy consumption for localization

by mobile beacon and unknown sensors; third, Z-path obstacle-handling trajectory

mechanism is designed to improve the effectiveness of the proposed path toward

obstacles which obstruct the path. Finally, the proposed Z-path obstacle handling

mechanism is integrated with the developed power adjustment scheme to improve the

energy efficiency of the designed obstacle tolerance mechanism. The performance of

the proposed trajectory is evaluated by comparing the efficiency with five benchmark

trajectories in terms of localization success, accuracy, energy efficiency, time and

ineffective position rate, which is a newly introduced metric by this research to

measure the collinearity of the trajectories. Simulation results show that Z-path has

successfully localized all 250 deployed sensors with higher precision by at least 5.88%

improvement than Localization with a Mobile Anchor based on Trilateration (LMAT)

trajectory and 58% improvement than random way point. It also serves as a benchmark

path with 93 ineffective positions per node localization as compared with LMAT as a

second efficient path by 100 collinear positions and faster trajectory for localization.

Furthermore, results revealed that Z-power accomplishes better performance in terms

of energy consumption as an average 34% for unknown sensors and 25% for mobile

beacon than Z-path. In case of obstacle tolerance mechanism, it ensures higher

localization performance in terms of accuracy, time and success around 37.5%, 13%

and 11% respectively, as compared to Z-path at the presence of obstacles. The handling

mechanism integrated with the power control scheme has reduced energy consumption

and improved ineffective position rate compared with Z-path handling trajectory by

35.7% and 54.4%, respectively.
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ABSTRAK

Rangkaian penderia tanpa wayar terdiri daripada berbilang penderia yang
berkomunikasi secara tanpa wayar untuk mengawasi satu kawasan fizikal. Dalam
banyak aplikasi seperti sistem amaran atau perkhidmatan kesihatan, adalah perlu untuk
menambah baik data yang diperolehi dengan maklumat lokasi. Penentuan koordinat
penderia yang ditebar secara rawak dikenali sebagai penyetempatan. Satu penyelesaian
kepada tebaran penderia statik ini ialah dengan memanfaatkan penyetempatan bantuan
bikon bergerak. Cabaran utama ialah merancang laluan optimum untuk bikon
bergerak supaya liputan sepenuhnya boleh dijamin, mempertingkatkan ketepatan
kedudukan yang dianggarkan dan mengurangkan masa yang diperlukan dalam
proses penyetempatan pada penderia yang mempunyai sumber terhad. Oleh itu,
penyelidikan ini bermatlamat untuk membangunkan mekanisme trajektori baik
untuk penyetempatan berbantukan-bikon bergerak bagi membantu penderia tak-
diketahui lokasi untuk menentukan kedudukannya dengan cekap. Untuk mencapai
matlamat ini; pertama, trajektori asli yang dinamakan sebagai Z-path dicadangkan
untuk menjamin penyetempatan penderia dengan ketepatan tinggi kerana laluan
ini mengurangkan kedudukan kolinear bikon dan menjanjikan masa penyetempatan
yang lebih pendek; kedua, skema pelarasan kuasa penghantaran Z-path yang
dinamakan sebagai Z-power dibangunkan supaya kuasa penghantaran dapat dilaraskan
secara dinamik dan optimum untuk penghantaran yang boleh diharapkan di
samping penjimatan penggunaan kuasa untuk penyetempatan bikon bergerak dan
penderia yang tidak diketahui; ketiga, trajektori pengendalian halangan Z-path
direka bentuk untuk mempertingkat kebolehgunaan menghadapi halangan dalam
laluan. Akhirnya, pengendalian penghalang Z-path yang dicadangkan diintegrasi
dengan skema pelarasan kuasa untuk mempertingkat kegunaan kuasa mekanisme
toleransi penghalang. Prestasi laluan trajektori yang dicadangkan dinilai dengan
membandingkan kecekapan dengan lima penanda arasan trajektori iaitu kejayaan
penyetempatan, ketepatan, kecekapan tenaga, masa dan nisbah kedudukan tak
berkesan, iaitu metrik yang baru diperkenalkan untuk mengukur kolineariti trajektori.
Keputusan simulasi menunjukkan Z-path berjaya menyetempat semua 250 penderia
yang diletak dengan peningkatan ketepatan sekurang-kurangnya 5.8% berbanding
Localization with a Mobile Anchor based on Trilateration (LMAT) trajektori dan
58% berbanding random way point. Ia juga menjadi laluan penanda aras dengan
93 kedudukan tak berkesan berbanding LMAT dengan 100 kedudukan kolinear
dan trajektori yang lebih pantas untuk penyetempatan. Tambahan lagi, keputusan
menunjukkan Z-power berprestasi lebih baik dari segi penggunaan tenaga iaitu
secara purata 34% untuk penderia tak diketahui dan 25% untuk bikon bergerak
berbanding Z-path. Dalam kes mekanisme toleransi penghalang, ia menjamin
prestasi penyetempatan yang lebih baik dari segi ketepatan, masa dan daya jaya
sebanyak 37.5%, 13% dan 11% setiap satunya berbanding Z-path dengan kehadiran
penghalang. Mekanisme pengendalian yang disepadu dengan skema kawalan kuasa
telah mengurangkan penggunaan tenaga dan mempertingkat nisbah kedudukan tak
berkesan berbanding trajektori pengendalian Z-path sebanyak 35.7% dan 54.4% setiap
satunya.
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CHAPTER 1

INTRODUCTION

1.1 Overview

A Wireless Sensor Network (WSN) is formed by many resource constraint

sensors communicating among them wirelessly to monitor a physical region.

Application scenarios of WSNs cover a wide spectrum of areas including military,

health, environment monitoring, household and commercial (Akyildiz et al., 2002;

Borges et al., 2014; Karray et al., 2014; Deif and Gadallah, 2014). Some of the

military applications of WSNs are enemy reconnaissance and attack detection, and

battle damage assessment. In the health area a typical crucial application of sensor

networks is to support the elderly. Forest fire detection, monitoring disaster area, and

target or animal tracking are few examples of environmental monitoring applications

of WSNs. In these scenarios, just to mention a few, the reported event is meaningful

and can be responded to only if the event position is known. Thus, the collected data

must be tagged with the location information where the data is attained. The process of

determining physical coordinates of a sensor node or the spatial relationships among

objects is known as localization (Mao et al., 2007; Amundson and Koutsoukos, 2009;

Han et al., 2011a; Gu et al., 2013).

Global Positioning System (GPS) is a commonly used and precise method

for localization (Qu and Zhang, 2011; Drawil et al., 2013). Unfortunately, the GPS

solution for WSN is neither cost-effective nor energy-efficient. Additionally, the



2

deployment-ability of sensor nodes which are equipped with GPS may be reduced due

to the increased size. Finally, these GPS-equipped sensors have limited applicability

because GPS works only in an open field (Bulusu et al., 2000; Bours et al., 2014).

Localization algorithms can relieve the problem where they are able to estimate the

location of sensors by using the position information of some portions of sensors.

Generally, these small proportion of location-aware sensors (either equipped with GPS

or installing at a fixed position) are called beacons. The rest of the sensors that need to

be localized are called unknown nodes.

WSNs can also be applied for missions where human operation is impossible

(e.g., under the ocean). So, installing beacon nodes in a predetermined location is

often infeasible. This means that, beacon nodes equipped with GPS receivers must be

employed for localization. Another observation is that the precision of the localization

increases with the number of beacons (Bulusu et al., 2000; Savvides et al., 2001), but

they increase the energy consumption and the overall cost of the WSN (Popescu et al.,

2012; Yaghoubi et al., 2014; Popescu et al., 2014).

Considering all the aforementioned problems, the motivation behind this

research is to investigate how a single mobile beacon can be employed as an alternative

solution to localize the entire network.

Since the accuracy provided by the localization algorithms is the most critical

issue, higher precision should be considered by the promised solution (Xu et al., 2013;

Zheng et al., 2014). Comparatively, localization through the use of a mobile beacon

is inherently more accurate and cost-effective than localization using static beacons

(Sichitiu and Ramadurai, 2004; Ssu et al., 2005; Lee et al., 2009). The mobile beacon

travels around the region of interest where unknown sensor nodes are deployed and

transmits the beacon messages which include its location information (Ou and He,

2011).
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Taking advantages of such a mobile beacon in location estimation is of

importance. Since mobile beacon-assisted localization algorithms offer significant

practical benefits, a fundamental issue is finding an optimum path for mobile beacon

trajectory to take advantage of such an architecture. Consequently, the mobile beacon-

assisted localization problem is limited to finding an optimum beacon trajectory (Tang

and Zhong, 2012; He et al., 2013). To mitigate this problem, various properties of an

optimum trajectory of the mobile beacon node need to be investigated.

A carefully selected deterministic trajectory can guarantee that all the unknown

sensors receive beacon messages and obtain estimation for their positions, as the basic

condition. On the other hand, traveling along a poor trajectory may cause certain

unknown sensors not to be localized due to being far away from the trajectory. The

discussed limitations lead the research to the design and development of an optimized

trajectory mechanism for mobile beacon assisted localization in WSN to improve the

overall performance of the localization.

1.2 Background

There has been a large body of research on localization for wireless sensor

networks over the last decade. Most existing localization schemes for WSNs are

classified based on a key classification into two main groups: range-based or range-

free. Range-free techniques only use connectivity information between sensors and

beacons. Bulusu et al. (2000), He et al. (2003) and Niculescu and Nath (2003b)

proposed some range-free methods. Range-based techniques use distance or angle

estimates for localization, such as methods proposed by Priyantha et al. (2000),

Bahl and Padmanabhan (2000) and Niculescu and Nath (2003a). Although it is a

comprehensive categorization of localization algorithms, it is not distinct enough for

further research in the presence of mobile beacon nodes and mobile sensor nodes. In
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a wide range of applications, a fully static network is not realistic. One solution is to

let localization algorithms benefit from node mobility. To capture this possibility, this

research reclassifies localization methods with respect to the mobility state of beacons

and sensor nodes, as shown in Figure 1.1.

Localization Classification 

Mobile Beacon Static Beacon 

Mobile Nodes Static Nodes Mobile Nodes Static Nodes 

Figure 1.1: Localization classification (based on mobility feature)

As illustrated in this figure, localization methods can be classified into four

groups: (1) static beacons and static nodes such as the methods proposed by Mao et al.

(2007), Han et al. (2011a) and Patwari et al. (2003); (2) static beacons and mobile

nodes such as the schemes proposed by Bulusu et al. (2000); (3) mobile beacons and

static nodes, as proposed by Sichitiu and Ramadurai (2004), Ssu et al. (2005), Chen

et al. (2010), and (4) mobile beacons and mobile nodes like the methods proposed by

Hu and Evans (2004) and Baggio and Langendoen (2008).

This research focuses on the category of mobile beacons with static sensor

nodes, because this kind of localization promises a wide spectrum of application

scenarios. An example can be a military application or a monitoring task like fire

detection, where sensor nodes are dropped from a plane on land, and transmitters

are attached to soldiers or animals acting as mobile beacons. Localization studies

with mobile beacons generally focus on two major problems, proposing an efficient

localization algorithm and developing an optimum mobile beacon movement strategy.

Sections 1.2.1 and 1.2.2 briefly survey representative methods for both issues.
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1.2.1 Mobile Beacon, Static Nodes Localization Algorithms

A key paper presented by Sichitiu and Ramadurai (2004), has localized

static nodes based on the RSSI of a mobile beacon and Bayesian inference. The

paper employed statistical principles for processing the received information from

mobile beacon, instead of imposing geometrical constraints. The major drawback

of the scheme is its relatively high computation complexity which increases energy

consumption. Ssu et al. (2005) proposed a prior method for localization of static sensor

nodes with four mobile beacons. Obstacles in the sensing field are tolerated, although it

causes radio irregularity. The major drawback of the mechanism is its long execution

time and high beacon overhead. In order to further improve localization accuracy

in Ssu’s scheme, Lee et al. (2009) proposed another geometric constraint-based

localization method. Only one mobile beacon moves around the network field. The

main drawback of this scheme is increasing location error with longer communication

range. Another mobile-beacon assisted localization method has been proposed by Guo

et al. (2010) which utilizes the geometric relationship of the perpendicular intersection

to compute node positions. The design was extended by a new mobile beacon which

is made up of a rotating arm and wheels to handle obstacle-resistance problem in the

network field. The extended design suffers from the extra cost while it requires the

extra hardwares. Ou (2011) presented an approach for locating static sensor nodes

by means of mobile beacon nodes equipped with four directional antennas. Obstacles

were taken into account in the proposed range-free localization method. The method

is efficient where the sensor nodes have no specific hardware requirements.

1.2.2 Mobile Beacon Trajectories

The main concern for developing an optimum trajectory for mobile beacon

assisted localization is how to find the optimal path for the mobile beacon. Some

fundamental properties of an optimum beacon path have been introduced by Sichitiu

and Ramadurai (2004). According to Sichitiu and Ramadurai (2004), all unknown
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sensors must fully covered by at least three non-collinear beacon messages. Indeed,

beacon positions symmetric to a straight line will be equally probable and the unknown

node will not be able to determine on which side of the line the node lies. These in-

line messages are known as collinear messages and at least one non-collinear beacon

message must be received for localization (Sichitiu and Ramadurai, 2004; Huang and

Zaruba, 2007; Han et al., 2011b). Several trajectories for mobile beacon assisted

localization have been surveyed by Han et al. (2011a). Here, a brief review is presented

on the existing mobile beacon trajectories for localization.

Scan, Double Scan, and Hilbert space filling curve are three well-known

trajectories proposed by Koutsonikolas et al. (2007). All these path types can

successfully achieve higher precision location estimation than Random Way Point

(RWP) (Sichitiu and Ramadurai, 2004; Camp et al., 2002). However, their accuracy

directly depends on the resolution of the trajectory (the distance between two

successive beacon positions). All the above path types can cover the network field, but

Scan suffers from collinearity (beacon messages as transmitted by the mobile beacon

node when it moves on a straight line). To solve the above problem, Double Scan

was proposed to traverse the field along both directions at the expense of doubling the

distance. A Hilbert space filling curve was then proposed to reduce the collinearity

without significantly increasing the path length, but a new problem arises. Sensors

located near the border of the deployment area are not able to estimate their locations.

So, coverage is not fully achieved by this approach and error will be increased.

CIRCLES and S-CURVES were proposed by Huang and Zaruba (2007) to

reduce the amount of straight lines and mitigate the collinearity problem of trajectory

mechanisms. Although they produce the shortest path length amongst other methods,

CIRCLES leaves the four corners, uncovered. However, CIRCLES can cope with the

problem but at the expense of longer path and as a result, higher energy consumption.

A spiral trajectory for mobile beacon was proposed by Hu et al. (2008). The trajectory

has trivial differences with CIRCLES and effectively solves the collinear problem as

well the localization accuracy. However, the trajectory suffers from long path lengths

and uncovered areas near the border of the network field.
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Han et al. (2011b) introduced a trajectory for localization based on trilateration.

The mobile beacon moves according to an equilateral triangle to broadcast its current

position. The path type successfully copes with the collinear beacons problem but it

cannot maintain the trajectory through the whole network field. It causes to increase

the localization error on the border of the deployment area. Moreover, the path length

traveled by the mobile beacon is long.

Ou and He (2011) have proposed a Scan-based trajectory which can be directly

applied to the localization method proposed by Ssu et al. (2005) to meet the specific

requirements of the localization method. Moreover, the obstacle resistant trajectory

has been considered to handle the obstacles where the obstacles can block the mobile

beacon trajectory.

Even all the proposed methods make the beacon movement possible along the

statically deterministic trajectories without the reference to the actual distribution of

the unknown nodes, several real time or dynamic trajectory schemes were introduced

by Li et al. (2012), Li et al. (2008) and Chang et al. (2012) to consider the real

distribution of the sensor nodes. The major drawback of real time schemes in

localization is the high numbers of message exchanges and high energy consumption.

It could be concluded that a considerable research attention has been attracted

to designing movement trajectories for mobile beacon-assisted localization, since a

carefully designed deterministic trajectory can guarantee the higher performance of

location estimation, as opposed to a random movement.
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1.3 Problem Statement

A well studied deterministic trajectory for mobile beacon-assisted localization

in a real environment is desired to ensure that all the unknown sensors receive sufficient

numbers of non-collinear beacon messages for maximum localization precision and

minimum energy cost. The existing designed trajectory mechanisms have some

limitations which are briefly addressed here. First, accuracy, as the critical goal of

localization techniques is not successfully obtained, especially in a real environment.

A node is best localized if the trajectory is close to that node since the RSS is higher.

But, this property is not sufficient to guarantee the precision of localization because the

RSS is dominated by the environmental interference. The signal may also scattered by

the obstacles and thus, increase the estimated error. Accordingly, a reliable channel and

radio model is crucially demanded to improve the accuracy of localization, especially

at the presence of obstacles. The obstruction in the sensing field cannot be tolerated

by most of the trajectories even though the path is blocked by these obstacles. Second,

the existing paths left the uncovered area by the mobile beacon in the network field

which cause to a lower localization success. Next, collinear beacon messages are

critical issue in the existing trajectories which demands further investigation. These

useless messages not only impair the precision of the localization but also increase

the time and energy consumption. The above limitations lead this research to address

the problem of finding a trajectory mechanism traveled by the mobile beacon in order

to localize the statically deployed unknown sensors in real environment with higher

precision and lower energy consumption. Considering the stated problem, the research

hypothesis can be expressed as follows:

The accuracy and energy efficiency of the location estimation of statically

deployed unknown sensors in WSN can be significantly improved if the traveling

path of the mobile beacon is planned to pass close to the sensors for transmitting

non-collinear beacon messages and further, the optimum transmission power can be

achieved.
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1.4 Research Questions

The above research hypothesis leads to address the following research

questions:

i. How to significantly improve the accuracy of the location estimation of

statically deployed unknown sensors in WSNs using a mobile beacon assisted

localization?

ii. How to optimize the consumed energy of both mobile beacon and unknown

sensors while the mobile beacon is traveling along the predefined movement

pattern without incurring the obtained location precision?

iii. How to handle the possible defficiency of the trajectory in the presence

of obstacles in real environment so as to increase localization success and

accuracy?

iv. How to test the validity and efficiency of the developed trajectory mechanism,

the proposed power adaptive scheme and the obstacle handling trajectory

mechanism, as compared with the existing proposed trajectories in terms of

accuracy, collinearity, success, energy efficiency and time.

1.5 Aim

This research aims at designing and evaluating a superior trajectory mechanism

for mobile beacon assisted localization to help statically deployed unknown sensors

to localize themselves with higher precision, shorter localization time, least possible

collinear positions and lower energy consumption for both obstacle-free and obstacle-

presence environments.
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1.6 Objectives

The following objectives are specified to optimize a movement trajectory for

mobile beacon assisted localization in WSNs, as the goal of the research:

i. To design and evaluate a superior trajectory mechanism for mobile beacon to

enhance unknown sensors localization which are statically deployed through

WSNs in order to minimize the localization error while obtaining minimum

number of collinear messages through shorter localization time.

ii. To design and evaluate a transmission power adjustment scheme for the

trajectory proposed in (i) towards achieving a power conservation trajectory

mechanism.

iii. To design and evaluate an obstacle-handling trajectory support for the

proposed trajectory mechanisms in (i) and (ii) towards improving the

usefulness of the localization technique at the presence of obstacles in the real

environment.

1.7 Scope

The scope of this research has following assumptions and limitations:

i. The large amount of unknown sensor nodes are deployed randomly. The

sensors are static and silent while do not transmit any messages for

localization.

ii. A single mobile beacon is employed to help localization. The mobile beacon

obtains its position coordinates via a Global Positioning System (GPS) which
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is equipped. The mobile beacon traverses through the network with different

moving speed.

iii. The mobile beacon travels along a deterministic trajectory and broadcasts

its current location at the predefined positions to help localization. The

boundaries of the field are known by the mobile beacon.

iv. The mobile beacon-assisted sensor localization is able to adjust its output

power during localization.

v. Both obstacle-free and obstacle presence environments are considered by this

research. In obstacle presence environment, 10% of the network field is

covered by obstacles.

vi. The mobile beacon is able to detect unknown obstacles within its

communication range while it is equipped with a compass.

1.8 Significance of the Study

Localization, with a high degree of precision, is an essential service for WSN

and demands a significant improvement since it is a critical requirement for different

applications and services. Employing a single mobile beacon to assist localization is

promising while it is both energy efficient and cost effective. The beacon traverses

around the network field and transmits its location information to cover the area

and help localizing unknown sensors which are statically deployed. However, the

main problem is how to find an optimum movement trajectory to benefit from the

mobile beacon location information to successfully and precisely localize the unknown

sensors. A carefully designed trajectory ensures all the unknown sensors are able to

receive sufficient, highly precise and non-collinear beacon messages while keeping

shorter time for location estimation. This research can assure a superior trajectory

mechanism to assist the unknown sensors to localize themselves precisely, energy

efficiently, successfully and timely.
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1.9 Research Contributions

As stated above, the aim of the research is to significantly improve the

efficiency of localization problem using a single mobile beacon messaging its location

information into static unknown sensors. Therefore, the research targets to design and

develop an optimized trajectory mechanism for mobile beacon assisted localization in

WSNs. So, the following contributions are achieved.

i. A superior trajectory mechanism for mobile beacon assisted localization

named Z-path to assist unknown sensors location estimation successfully,

accurately and timely.

ii. A critical metric named Ineffective Position Rate to analyze the effectiveness

and efficiency of movement trajectories for mobile beacon assisted

localization in terms of the ratio of collinearity.

iii. A reliable and realistic wireless channel and radio model in order to transmit

a beacon message for localization through the network.

iv. An optimum transmission power adjustment scheme named Z-power to

minimize the required power for a reliable transmission of beacon messages

by the mobile beacon traveling along Z-path trajectory mechanism.

v. A novel mathematical definition for theoretically analysis the relation between

the distance of sender and receiver with the required optimum transmission

power of the mobile beacon assisted localization traveling along a static

trajectory.

vi. An obstacle-handling trajectory mechanism to further enhanced the

effectiveness and efficiency of the proposed trajectory mechanism in an

environment where the path is obstructed by the obstacles.
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1.10 Thesis Organization

The thesis contains 7 chapters organized as in Figure 1.2.

Chapter 1

Introduction

Chapter 2

literature Review

Chapter 3

Research Methodology

Chapter 4

Superior Trajectory 
Mechanism 

(Z-path)

Chapter 5

Transmission Power 
Adjustment Scheme 

(Z-power)

Chapter 6

Z-path Obstacle-Handling 
Trajectory Mechanism

Chapter 7

Conclusions

Figure 1.2: Thesis organization

Chapter 1 introduces the research study. Chapter 2 provides the extensive

literature review related to this research. Chapter 3 presents the methodology adopted

in this research. Chapter 4 explains the design and development of a superior trajectory

mechanism for mobile beacon-assisted localization in WSN named Z-path. Chapter

5 addresses the design and development of Z-path transmission power adjustment

scheme. Chapter 6 is dedicated to design and development of Z-path obstacle handling

trajectory mechanism. Chapter 7 concludes the thesis by a summary of contributions

and presents the possible future directions.
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