33 research outputs found

    Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle

    Get PDF
    Abstract Lifelong regular physical activity is associated with reduced risk of type 2 diabetes (T2D), maintenance of muscle mass and increased metabolic capacity. However, little is known about epigenetic mechanisms that might contribute to these beneficial effects in aged individuals. We investigated the effect of lifelong physical activity on global DNA methylation patterns in skeletal muscle of healthy aged men, who had either performed regular exercise or remained sedentary their entire lives (average age 62 years). DNA methylation was significantly lower in 714 promoters of the physically active than inactive men while methylation of introns, exons and CpG islands was similar in the two groups. Promoters for genes encoding critical insulin-responsive enzymes in glycogen metabolism, glycolysis and TCA cycle were hypomethylated in active relative to inactive men. Hypomethylation was also found in promoters of myosin light chain, dystrophin, actin polymerization, PAK regulatory genes and oxidative stress response genes. A cluster of genes regulated by GSK3β-TCF7L2 also displayed promoter hypomethylation. Together, our results suggest that lifelong physical activity is associated with DNA methylation patterns that potentially allow for increased insulin sensitivity and a higher expression of genes in energy metabolism, myogenesis, contractile properties and oxidative stress resistance in skeletal muscle of aged individuals

    Circular DNA elements of chromosomal origin are common in healthy human somatic tissue

    Get PDF
    Somatic cells can accumulate structural variations such as deletions. Here, Møller et al. show that normal human cells generate large extrachromosomal circular DNAs (eccDNAs), most likely the products of excised DNA, that can be transcriptionally active and, thus, may have phenotypic consequences

    The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome

    No full text
    Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21–specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.The study was supported by grants from the NCCR–Frontiers in Genetics, the European AnEuploidy project, the Fondation Child Care, the SNF 144082, the ERC 249968 to S.E.A., and the Spanish Ministry of Ecomomy and Competitivity to X.E. P.M. was supported by a grant from the Bodossaki foundation. K.P. was supported by the EMBO long-term fellowship program ALTF 527-201

    Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21

    Get PDF
    Down syndrome (trisomy 21) is the most common viable chromosomal disorder with intellectual impairment and several other developmental abnormalities. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from monozygotic twins discordant for trisomy 21 in order to eliminate the effects of the variability of genomic background. The alterations observed by genetic analysis at the iPSC level and at first approximation in early development illustrate the developmental disease transcriptional signature of Down syndrome. Moreover, we observed an abnormal neural differentiation of Down syndrome iPSCs in vivo when formed teratoma in NOD-SCID mice, and in vitro when differentiated into neuroprogenitors and neurons. These defects were associated with changes in the architecture and density of neurons, astroglial and oligodendroglial cells together with misexpression of genes involved in neurogenesis, lineage specification and differentiation. Furthermore, we provide novel evidence that dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) on chromosome 21 likely contributes to these defects. Importantly, we found that targeting DYRK1A pharmacologically or by shRNA results in a considerable correction of these defects

    Nisin probiotic prevents inflammatory bone loss while promoting reparative proliferation and a healthy microbiome

    No full text
    Dysbiosis of the oral microbiome mediates chronic periodontal disease. Realignment of microbial dysbiosis towards health may prevent disease. Treatment with antibiotics and probiotics can modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. Antibacterial peptides or bacteriocins, such as nisin, and a nisin-producing probiotic, Lactococcus lactis, have not been examined in this context, yet warrant examination because of their biomedical benefits in eradicating biofilms and pathogenic bacteria, modulating immune mechanisms, and their safety profile in humans. This study's goal was to examine the potential for nisin and a nisin-producing probiotic to abrogate periodontal bone loss, the host inflammatory response, and changes in oral microbiome composition in a polymicrobial mouse model of periodontal disease. Nisin and a nisin-producing Lactococcus lactis probiotic significantly decreased the levels of several periodontal pathogens, alveolar bone loss, and the oral and systemic inflammatory host response. Surprisingly, nisin and/or the nisin-producing L. lactis probiotic enhanced the population of fibroblasts and osteoblasts despite the polymicrobial infection. Nisin mediated human periodontal ligament cell proliferation dose-dependently by increasing the proliferation marker, Ki-67. Nisin and probiotic treatment significantly shifted the oral microbiome towards the healthy control state; health was associated with Proteobacteria, whereas 3 retroviruses were associated with disease. Disease-associated microbial species were correlated with IL-6 levels. Nisin or nisin-producing probiotic's ability to shift the oral microbiome towards health, mitigate periodontal destruction and the host immune response, and promote a novel proliferative phenotype in reparative connective tissue cells, addresses key aspects of the pathogenesis of periodontal disease and reveals a new biomedical application for nisin in treatment of periodontitis and reparative medicine

    Candidate variants in <em>TUB</em> are associated with familial tremor.

    No full text
    Author summary Essential tremor (ET) is the most common adult-onset movement disorder and in most affected families it appears to be inherited in an autosomal dominant pattern. The causes of essential tremor are unknown. Although many genetic studies in affected families and sporadic cases of ET have shown that genes may play a role, it has proven quite challenging to identify the specific genetic variants involved. Here, we use state-of-the-art technologies to identify the role of genetic variants on ET through exome sequencing of a large affected ET family and subsequent validation in a large population of cases and controls. We show that rare nonsynonymous variants of theTUBgene are significantly enriched in ET cases versus healthy controls. Further studies of biological pathways regulated by TUB in the mouse brain reveal key pathways related to ET. Our work expands our knowledge of the genetic basis of ET.Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified aTUBp.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing ofTUBin 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymousTUBvariants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08).TUBencodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants inTUBwith ET
    corecore