21,486 research outputs found

    Numerical solutions of free-molecule flow in converging and diverging tubes and slots

    Get PDF
    Numerical solutions of free molecular flow in converging and diverging tubes and slot

    Condensation on spacecraft surfaces downstream of a Kaufman thruster

    Get PDF
    Thruster exhaust products condensation on surfaces downstream of mercury electron bombardment ion thruste

    X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations

    Get PDF
    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index \Gamma of the illuminating radiation, the ionization parameter \xi at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A_{Fe} relative to the solar value. The ranges of the parameters covered are: 1.2 \leq \Gamma \leq 3.4, 1 \leq \xi \leq 10^4, and 0.5 \leq A_{Fe} \leq 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file{\url{http://hea-www.cfa.harvard.edu/~javier/xillver/}} suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.Comment: 70 pages, 21 figures, submitted to Ap

    A computer operated mass spectrometer system

    Get PDF
    Digital computer system for processing mass spectrometer output dat

    Computer control of mass analyzers

    Get PDF
    Digital computer control of mass spectrometer

    A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies

    Get PDF
    The Wisconsin H Alpha Mapper has been used to set the first deep upper limits on the intensity of diffuse H alpha emission from warm ionized gas in the Local Group dwarf spheroidal galaxies (dSphs) Draco and Ursa Minor. Assuming a velocity dispersion of 15 km/s for the ionized gas, we set limits for the H alpha intensity of less or equal to 0.024 Rayleighs and less or equal to 0.021 Rayleighs for the Draco and Ursa Minor dSphs, respectively, averaged over our 1 degree circular beam. Adopting a simple model for the ionized interstellar medium, these limits translate to upper bounds on the mass of ionized gas of approximately less than 10% of the stellar mass, or approximately 10 times the upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa Minor dSphs could contain substantial amounts of interstellar gas, equivalent to all of the gas injected by dying stars since the end of their main star forming episodes more than 8 Gyr in the past, without violating these limits on the mass of ionized gas.Comment: 10 pages, 2 figures, AASTeX two-column format. Accepted for publication in The Astrophysical Journa

    Fiscal year 1976 progress report on a feasibility study evaluating the use of surface penetrators for planetary exploration

    Get PDF
    The feasibility of employing penetrators for exploring Mars was examined. Eight areas of interest for key scientific experiments were identified. These include: seismic activity, imaging, geochemistry, water measurement, heatflow, meteorology, magnetometry, and biochemistry. In seven of the eight potential experiment categories this year's progress included: conceptual design, instrument fabrication, instrument performance evaluation, and shock loading of important components. Most of the components survived deceleration testing with negligible performance changes. Components intended to be placed inside the penetrator forebody were tested up to 3,500 g and components intended to be placed on the afterbody were tested up to 21,000 g. A field test program was conducted using tentative Mars penetrator mission constraints. Drop tests were performed at two selected terrestrial analog sites to determine the range of penetration depths for anticipated common Martian materials. Minimum penetration occurred in basalt at Amboy, California. Three full-scale penetrators penetrated 0.4 to 0.9 m into the basalt after passing through 0.3 to 0.5 m of alluvial overburden. Maximum penetration occurred in unconsolidated sediments at McCook, Nebraska. Two full-scale penetrators penetrated 2.5 to 8.5 m of sediment. Impact occurred in two kinds of sediment: loess and layered clay. Deceleration g loads of nominally 2,000 for the forebody and 20,000 for the afterbody did not present serious design problems for potential experiments. Penetrators have successfully impacted into terrestrial analogs of the probable extremes of potential Martian sites

    A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function

    Get PDF
    The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer
    corecore