578 research outputs found

    An investigation into the pathogenesis of vulvo-vaginal candidosis

    Get PDF
    OBJECTIVE: To monitor yeasts isolated from women during and between episodes of recurrent vulvo-vaginal candidosis (VVC) to determine whether vaginal relapse or re-infection occurred. METHODS:Women presenting at the genitourinary medicine clinic with signs and symptoms of VVC were recruited to the study (n = 121). A vaginal washing, high vaginal swab (HVS) and rectal swab were taken and the women treated with a single 500 mg clotrimazole pessary.Women were asked to re-attend after 1, 4, and 12 weeks, or when the VVC recurred, when vaginal washings and HVS were repeated. Candida isolates recovered were strain typed using the Ca3 probe and their similarity assessed. Antifungal susceptibility to fluconazole and clotrimazole were determined. RESULTS: Of the women recruited, 47 completed the study, either returning for four visits or suffering a recurrence during the study period. Of the 22 women who experienced recurrence, the same strain was responsible for the initial and recurrent episode in 17 women. For the remaining five women, four had strain replacement and one had a change of species. None of the isolates recovered from the women demonstrated resistance to either clotrimazole or fluconazole. CONCLUSIONS: Our findings support the theory of vaginal relapse and thus may support the use of more prolonged courses of antifungal therapy initially to increase the chances of eradication of the yeast

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    Nanostructure and paramagnetic centres in diamond-like carbon: Effect of Ar dilution in PECVD process

    Get PDF
    Diamond-like carbon (DLC) films were deposited utilising plasma enhanced chemical vapour deposition (PECVD) with acetylene precursor, diluted with 0 – 45% argon. Electron paramagnetic resonance (EPR) measurements show the presence of one paramagnetic centre with no change in spin population over the range of film deposition conditions. However, the EPR linewidth decreases with increasing argon content of the precursor mix, suggesting an enhancement of motional narrowing due to an increase in electron delocalization, related to an increase in the sp2 cluster size. Atomic force microscopy (AFM) measurements indicate the surface of the DLC is formed of nanoscale asperities of material. With radii of tens of nanometres for films deposited with zero argon, the size of the features increases with the argon dilution of the acetylene. Energy dispersive x-ray analysis and electrical measurements further elucidate the changes in film structure

    ANN-based energy reconstruction procedure for TACTIC gamma-ray telescope and its comparison with other conventional methods

    Full text link
    The energy estimation procedures employed by different groups, for determining the energy of the primary γ\gamma-ray using a single atmospheric Cherenkov imaging telescope, include methods like polynomial fitting in SIZE and DISTANCE, general least square fitting and look-up table based interpolation. A novel energy reconstruction procedure, based on the utilization of Artificial Neural Network (ANN), has been developed for the TACTIC atmospheric Cherenkov imaging telescope. The procedure uses a 3:30:1 ANN configuration with resilient backpropagation algorithm to estimate the energy of a γ\gamma-ray like event on the basis of its image SIZE, DISTANCE and zenith angle. The new ANN-based energy reconstruction method, apart from yielding an energy resolution of \sim 26%, which is comparable to that of other single imaging telescopes, has the added advantage that it considers zenith angle dependence as well. Details of the ANN-based energy estimation procedure along with its comparative performance with other conventional energy reconstruction methods are presented in the paper and the results indicate that amongst all the methods considered in this work, ANN method yields the best results. The performance of the ANN-based energy reconstruction has also been validated by determining the energy spectrum of the Crab Nebula in the energy range 1-16 TeV, as measured by the TACTIC telescope.Comment: 23pages, 9 figures Accepted for publication in NIM

    Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles

    Full text link
    Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for a fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300K300\,\mathrm{K} is 30.15Wm1K130.15\,\mathrm{Wm^{-1}K^{-1}} (zigzag) and 13.65Wm1K113.65\,\mathrm{Wm^{-1}K^{-1}} (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relation with temperature when the temperature is higher than Debye temperature (ΘD=278.66K\Theta_D = 278.66\,\mathrm{K}). In comparison to graphene, the minor contribution around 5%5\% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.Comment: 5 pages and 6 figures, Supplemental Material available as http://www.rsc.org/suppdata/cp/c4/c4cp04858j/c4cp04858j1.pd

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, β\beta. We find that while the observed value β=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value

    Calculating invariants as coreflexive bisimulations

    Get PDF
    Invariants, bisimulations and assertions are the main ingredients of coalgebra theory applied to software systems. In this paper we reduce the first to a particular case of the second and show how both together pave the way to a theory of coalgebras which regards invariant predicates as types. An outcome of such a theory is a calculus of invariants’ proof obligation discharge, a fragment of which is presented in the paper. The approach has two main ingredients: one is that of adopting relations as “first class citizens” in a pointfree reasoning style; the other lies on a synergy found between a relational construct, Reynolds’ relation on functions involved in the abstraction theorem on parametric polymorphism and the coalgebraic account of bisimulations and invariants. This leads to an elegant proof of the equivalence between two different definitions of bisimulation found in coalgebra literature (due to B. Jacobs and Aczel & Mendler, respectively) and to their instantiation to the classical Park-Milner definition popular in process algebra.Partially supported by the Fundacao para a Ciencia e a Tecnologia, Portugal, under grant number SFRH/BD/27482/2006

    On the spherical-axial transition in supernova remnants

    Full text link
    A new law of motion for supernova remnant (SNR) which introduces the quantity of swept matter in the thin layer approximation is introduced. This new law of motion is tested on 10 years observations of SN1993J. The introduction of an exponential gradient in the surrounding medium allows to model an aspherical expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR, SN1987a, are modeled. In the case of SN1987a the three observed rings are simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics & Space Science in the year 201

    Simplified Multistep Outflow Method to Estimate Unsaturated Hydraulic Functions for Coarse-Textured Soils

    Get PDF
    Although the multistep outfl ow (MSO) method is well suited for the estimation of soil hydraulic properties by inverse solution techniques, this method has not been widely adopted because it requires advanced instrumentation and is time consuming. Th e objective of this study was to develop a modifi ed version of the multistep outfl ow technique that largely simplifi es laboratory procedures and reduces costs and time. Th e numerical inversion procedures require applying user-friendly HYDRUS soft ware to estimate fi tting parameters for soil water retention and unsaturated hydraulic conductivity curves. Whereas values of saturated water content and saturated hydraulic conductivity must be measured independently, the remaining functional parameters are estimated using an inverse solution of a transient drainage experiment using multiple suction steps and a hanging water column, with drainage outfl ows measured during drainage. A comparison test showed that the simplifi ed experiment without tensiometric measurements provided suffi cient information in the parameter identifi cation compared with a traditional pressure outfl ow experiment with tensiometric measurements for an Oso Flaco sand and a loamy sand fi eld soil in the suction range of 0 to 17 kPa
    corecore