
Calculating Invariants as Coreflexive Bisimulations

Luı́s S. Barbosa1, José N. Oliveira1, and Alexandra Silva2,�

1 CCTC, Universidade do Minho, 4700-320 Braga, Portugal
2 Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, NL-1098 SJ Amsterdam

Abstract. Invariants, bisimulations and assertions are the main ingredients of
coalgebra theory applied to software systems. In this paper we reduce the first
to a particular case of the second and show how both together pave the way to a
theory of coalgebras which regards invariant predicates as types. An outcome of
such a theory is a calculus of invariants’ proof obligation discharge, a fragment
of which is presented in the paper.

The approach has two main ingredients: one is that of adopting relations as
“first class citizens” in a pointfree reasoning style; the other lies on a synergy
found between a relational construct, Reynolds’ relation on functions involved in
the abstraction theorem on parametric polymorphism and the coalgebraic account
of bisimulations and invariants. This leads to an elegant proof of the equivalence
between two different definitions of bisimulation found in coalgebra literature
(due to B. Jacobs and Aczel & Mendler, respectively) and to their instantiation to
the classical Park-Milner definition popular in process algebra.

Keywords: coalgebraic reasoning; proof obligations; pointfree transform; pro-
gram calculation.

1 Introduction

The most widespread application of computer systems today is to support business op-
erations. For this reason, the onus is on the software developer to ensure that business
rules are properly taken into account. Computer scientists regard such rules as examples
of invariant properties. The word “invariant” captures the idea that such desirable prop-
erties are to be maintained invariant, that is, unharmed across all transactions which are
embodied in the system’s functionality.

Changing business rules (ie. invariants) has a price: the code needs to be upgraded so
as to ensure that changes are properly taken into account. This calls for a general theory
of invariant preservation upon which one could base such an extended static checking
mechanism. And this theory requires a broad view of computer systems able to take
into account data persistence and continued interaction.

Coalgebra theory, widely acknowledged as the mathematics of state-based systems
[22], provides an adequate modeling framework for such systems. The basic insight in
coalgebraic modelling is that of representing state-based systems by functions of type

p : X −→ FX (1)

� Partially supported by the Fundação para a Ciência e a Tecnologia, Portugal, under grant num-
ber SFRH/BD/27482/2006.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 83–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55620744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

84 L.S. Barbosa, J.N. Oliveira, and A. Silva

which, for every state x ∈ X , describe the observable effects of an elementary step in
the evolution of the system (i.e., a state transition). The possible outcomes of such steps
are captured by notation FX , where functor F acts as a shape for the system’s interface.

Jacobs [11] identifies three cornerstones in the theory of coalgebras: invariants,
bisimilarity and assertions. The latter are modal properties of states. About the first
he writes: an important aspect of formally establishing the safety of systems is to prove
that certain crucial predicates are actually invariants.

In this paper we develop a theory of invariant preservation whose novelty resides
in explicitly expressing invariants as bisimulations. (See section 3 and its follow up.)
The third cornerstone, assertions, is addressed in section 6. Altogether, we adopt a cal-
culational style which stems from the explicit use of relational techniques, a body of
knowledge often referred to as the algebra of programming [7].

Our starting point is Jacobs definition of an invariant for a given coalgebra [11]:

Definition 1. Let F : Sets → Sets be a polynomial functor. An invariant for a coalge-
bra c : X → F(X) is a predicate P ⊆ X satisfying for all x ∈ X ,

x ∈ P ⇒ c(x) ∈ Pred(F)(P). (2)

Pred(F)(P) stands for the lifting of predicate P via functor F. (We will spell out the
meaning of this construct very soon.)

Our approach will be to reason about (2) via the PF-transform [2,7,17] — a trans-
formation of first order predicate formulæ into pointfree binary relation formulæ which
will enable us to blend the concept of invariant with that of bisimulation in a handy
way. (In fact, we will show the former is a particular case of the latter.) By pointfree we
mean formulæ which are free of quantifiers and variables (points) such as x above 1.

Structure of the paper. The paper starts by PF-transforming definition (2), in section 2,
to conclude that invariants are a special case of bisimulations (section 3). Section 4
recasts bisimulations in terms of Reynolds’ arrow combinator and resorts to its calcu-
lational power to provide elegant proofs of equivalence between three most common
definitions of bisimulation. The development of (a fragment of) the theory of invariants
is pursued in section 5, upon a category of “predicates as types”. Moving on, section 6
illustrates how the approach proposed in this paper can be also of use to reason about
modal assertions over coalgebras. Finally, section 7 concludes and gives pointers to
related and future work.

2 Invariants PF-Transformed

Our first step is to convert definition (2) into a binary relational formula. The principle
is that of PF-transforming universally quantified formulæ by applying, from right to

1 The idea of encoding predicates in terms of relations was initiated by De Morgan in the 1860s
and followed by Peirce who, in the 1870s, found interesting equational laws of the calculus of
binary relations [19]. The pointfree nature of the notation which emerged from this embryonic
work was later further exploited by Tarski and his students [23]. In the 1980’s, Freyd and
Ščedrov [9] developed the notion of an allegory (a category whose morphisms are partially
ordered) which finally accommodates the binary relation calculus [7] as special case.

Calculating Invariants as Coreflexive Bisimulations 85

left, the definition of relational inclusion which follows,

R ⊆ S ≡ 〈∀ y, x :: y R x ⇒ y S x〉 (3)

for R, S two binary relations 2. In the case of (2), this means that R will have to capture
set (predicate) P and S will have to do the same for set Pred(F)(P). One of the stan-
dard ways of encoding a set X as a binary relation is as follows: one defines a relation
ΦX such that

y ΦX x ≡ y = x ∧ x ∈ X (4)

Relations of this kind are referred to as coreflexives because they are fragments of
the identity relation id: ΦX ⊆ id. For instance, set {1, 2, 3} is captured by relation
Φ{1,2,3} = {(1, 1), (2, 2), (3, 3)}. We also need the binary relation composition opera-
tor

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (5)

(read R · S as ”R after S”) and to assert a rule which will prove convenient,

(f b)R(g a) ≡ b(f◦ · R · g)a (6)

where f and g are functions and ◦ denotes the relational converse operator defined by:

a(R◦)b ≡ b R a (7)

In this context, we reason:

〈∀ x :: x ∈ P ⇒ c(x) ∈ Pred(F)(P)〉
≡ { ∀-one point rule }

〈∀ y, x : y = x : x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(F)(P)〉
≡ { ∀-trading }

〈∀ y, x :: y = x ∧ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(F)(P)〉
≡ { (4) twice }

〈∀ y, x :: y ΦP x ⇒ c(y) ΦPred(F)(P) c(x)〉

≡ { rule (6) }

〈∀ y, x :: y ΦP x ⇒ y(c◦ · ΦPred(F)(P) · c)x〉

≡ { rule (3) }

ΦP ⊆ c◦ · ΦPred(F)(P) · c (8)

Predicate Pred(F)(P) is defined in [11] (Def. 4.1.1) by induction on the structure of
polynomial F. This can be abbreviated by regarding F as a relator [5] and representing

2 By y R x we mean the fact that pair (y, x) belongs to R. (Similarly for y S x.)

86 L.S. Barbosa, J.N. Oliveira, and A. Silva

P by its coreflexive ΦP . The concept of a relator F extends that of functor to relations:
FA describes a parametric type while FR is a relation from FA to FB provided R is a
relation from A to B. Relators are monotone and commute with composition, converse
and the identity. In this context, Pred(F)(P) coincides with relation FΦP . Thus we
resume to (8) and calculate further:

ΦP ⊆ c◦ · FΦP · c
≡ { see (10) below }

c · ΦP ⊆ FΦP · c (9)

where the last step is justified by the first of the following laws of the relational calculus,

f · R ⊆ S ≡ R ⊆ f◦ · S (10)

R · f◦ ⊆ S ≡ R ⊆ S · f (11)

known as the shunting rules [7] 3.
Altogether, we arrive at (9), a quite compact version of (2). It tells that wherever c

runs on states satisfying P , any of its successor states will do so. The sections which
follow will give evidence of the advantages of such a transformation.

3 Invariants Are Bisimulations

We move on to the second cornerstone of coalgebra theory — bisimilarity. This is based
on the concept of bisimulation which is given by Jacobs [11] as follows:

Definition 2. A bisimulation for coalgebras c : X → F(X) and d : Y → F(Y) is a
relation R ⊆ X × Y which is closed under c and d:

(x, y) ∈ R ⇒ (c(x), d(y)) ∈ Rel(F)(R). (12)

for all x ∈ X and y ∈ Y .

X

c

��

Y
R��

d

��
⊆

FX FY
F R

��

X

c

��

X
ΦP��

c

��
⊆

FX FX
F ΦP

��

(a) (b)

This time Rel(F)(R) stands for the
relational lifting of R via functor F
which, in our relational setting, is cap-
tured by notation FR.

An exercise at all similar to the one
carried out in the previous section will
show (12) PF-transformed into

c · R ⊆ FR · d (13)

as depicted in diagram (a) above, where X and Y are the carriers of coalgebras c and
d, respectively. Since (9) instantiates (13) we have that invariants are special cases of
bisimulations: exactly those which are coreflexive relations, cf. diagram (b).

3 Functions are denoted by lowercase characters (eg. f , g, φ) and function application will be ab-
breviated by juxtaposition, eg. f a instead of f(a). Coalgebras qualify for these rules because
they are functions.

Calculating Invariants as Coreflexive Bisimulations 87

We shall see briefly that this conclusion brings about its benefits, as much of the
theory of coalgebraic invariants stems directly from that of bisimulations 4. We will
address this one first.

4 Calculating Bisimulations

Let us first show how the classical definition of bisimulation used in process algebra
(due to Milner and Park [18]) can be retrieved from (13) simply by instantiating F to
the powerset relator PX = {S |S ⊆ X}. We need the universal property of the power-
transpose isomorphism Λ

f = ΛR ≡ R = ∈ ·f (14)

which converts binary relations to set-valued functions [7], where A PA
∈�� is the

membership relation. In [7] the powerset relator is defined by

PR = (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ (15)

where ∩ denotes relation intersection and R \ S denotes relational division,

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉

a relational operator whose semantics is captured by universal property

R · X ⊆ S ≡ X ⊆ R \ S (16)

The main ingredient of the calculation below is (14), which ensures that every pow-
erset coalgebra uniquely determines a binary relation (Λ is a bijection). In this context,
let R be a bisimulation between two powerset coalgebras ΛS and ΛU . We reason:

(ΛS) · R ⊆ (PR) · (ΛU)

≡ { unfolding PR (15) }

(ΛS) · R ⊆ (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ · (ΛU)

≡ { distribution (since ΛU is a function) thanks to (11) }

(ΛS) · R ⊆ (∈ \(R· ∈)) · (ΛU) ∧ (ΛS) · R ⊆ (∈ \ (R◦· ∈))◦ · (ΛU)

≡ { property R \ (S · f) = (R \ S) · f ; converses }

(ΛS) · R ⊆ ∈ \ (R· ∈ ·ΛU) ∧ R◦ · (ΛS)◦ ⊆ (ΛU)◦ · (∈ \ (R◦· ∈))

≡ { shunting rules (10,11) and property above }

(ΛS) · R ⊆ ∈ \ (R· ∈ ·ΛU) ∧ (ΛU) · R◦ ⊆ ∈ \ (R◦· ∈ ·ΛS)

≡ { (16) twice }

4 It is interesting to note that Lemma 4.2.2 in [11] proves that relation {(x, x) | x ∈ P} is a
bisimulation yielded by invariant P , but no further advantage is taken from this fact.

88 L.S. Barbosa, J.N. Oliveira, and A. Silva

∈ · (ΛS) · R ⊆ R· ∈ ·ΛU ∧ ∈ · (ΛU) · R◦ ⊆ R◦· ∈ ·ΛS

≡ { cancellation ∈ · (ΛR) = R four times }

S · R ⊆ R · U ∧ U · R◦ ⊆ R◦ · S

p

S

��

q

U

��

R��

p′ q′
R

��

The two conjuncts state that R and its converse are simulations
between state transition relations S and U , which corresponds to the
Park-Milner definition 5: a bisimulation is a simulation between two
LTS such that its converse is also a simulation, where a simulation
between two LTS S and U is a relation R such that, if (p, q) ∈ R,
then for all p′ such that (p′, p) ∈ S, then there is a q′ such that
(p′, q′) ∈ R and (q′, q) ∈ U — see diagram on the right 6.

Rπ1

������� π2

�������

ρ

��
X

c

��

Y

d

��
FRF π1

������
F π2

������

FX FY

We furthermore want to check (13) against another (also
coalgebraic) definition of bisimulation due to Aczel &
Mendler [1]: given two coalgebras c : X → F (X) and
d : Y → F (Y) an F-bisimulation is a relation R ⊆ X × Y
which can be extended to a coalgebra ρ such that projections
π1 and π2 lift to F-coalgebra morphisms. (See diagram aside.)

Jacobs [11] spends some time in proving the equivalence between the two definitions.
Our proof will be much shorter and calculational thanks to a small trick: we identify
(13) as instance

c(FR ← R)d (17)

of Reynolds “arrow combinator” R ← S which, given R and S, relates two functions f
and g as follows [2]:

f(R ← S)g ≡ f · S ⊆ R · g (18)

With points, f(R ← S)g means 〈∀ y, x :: y S x ⇒ (f y)R(g x)〉. For instance, for f
and g the same function and S and R two partial orders, (18) means that such a function
is monotonic.

The fact that we can write (17) instead of c · R ⊆ FR · d (13) to mean that R
is a bisimulation between F coalgebras c and d is of great notational, conceptual and
calculational advantage. As far as notation is concerned, (17) is very appropriate for
telling that c and d produce FR-related outputs c y and d x provided their inputs are
R-related (y R x). Conceptually, FR ← R may be regarded as a relation involving
all coalgebras which are R-bisimilar. But it is the calculational power implicit in (17)
which really justifies the recasting of (13) in terms of Reynolds’ arrow combinator.

In another context, this combinator is studied in some detail in [2], where the follow-
ing PF-properties can be found:

id ← id = id (19)
5 The pointwise definition of simulation is better perceived once S ·R ⊆ R ·U is re-written into
R ⊆ S \ (R · U), recall (16) — similarly for the other conjunct. Matteo Vaccari [24] performs
a calculation similar to the above starting directly from this pointwise definition.

6 A popular presentation of the classical definition of bisimulation uses LTS defined by the
labelled powerset relator P(A × X), for A a given set of actions. The reasoning for this
functor is the same: only P(id × R) should replace PR in the calculation.

Calculating Invariants as Coreflexive Bisimulations 89

(R ← S)◦ = R◦ ← S◦ (20)

R ← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (21)

k(f ← g)h ≡ k · g = f · h (22)

From property (21) we learn that the combinator is monotonic on the left hand side
— and thus facts

S ← R ⊆ (S ∪ V) ← R (23)

� ← S = � (24)

hold 7 — and anti-monotonic on the right hand side — and thus property

R ← ⊥ = � (25)

and the two distributive laws which follow:

S ← (R1 ∪ R2) = (S ← R1) ∩ (S ← R2) (26)

(S1 ∩ S2) ← R = (S1 ← R) ∩ (S2 ← R) (27)

Let us see how the properties above explain those of bisimulation by themselves.
Property (20) ensures that the converse of a bisimulation is also a bisimulation. This
turns out to be an equivalence:

R is a bisimulation

≡ { (17) }
c(FR ← R)d

≡ { converse }
d(FR ← R)◦c

≡ { (20) }

d((FR)◦ ← R◦)c
≡ { relator F }

d(F(R◦) ← R◦)c
≡ { (17) }

R◦ is a bisimulation

Next, we recall the definition of a coalgebra morphism:

Definition 3. Let (X, p : X −→ FX) and (Y, q : Y −→ FY) be coalgebras for
functor F. A morphism connecting p and q is a function h between their carriers such
that q · h = Fh · p.

Clearly, property (22) tells immediately that coalgebra morphisms are bisimulations.
The easy calculation of F id ← id = id (19) ensures id is a bisimulation between a

given coalgebra and itself. On the other side of the spectrum, (25) tells us that ⊥ is a
bisimulation for any pair of coalgebras c and d. (Just introduce points in F⊥ ← ⊥ and
simplify.)

Let us now see how the fact that bisimulations are closed under union,

c(FR1 ← R1)d ∧ c(FR2 ← R2)d ⇒ c(F(R1 ∪ R2) ← (R1 ∪ R2))d (28)

7 Cf. f · S · g◦ ⊆ � ≡ TRUE concerning (24).

90 L.S. Barbosa, J.N. Oliveira, and A. Silva

stems from properties (21,23) and (26). First we PF-transform (28) to

(FR1 ← R1) ∩ (FR2 ← R2) ⊆ F(R1 ∪ R2) ← (R1 ∪ R2)

and reason:

(FR1 ← R1) ∩ (FR2 ← R2)

⊆ { (23) (twice) ; monotonicity of ∩ }

((FR1 ∪ FR2) ← R1) ∩ ((FR1 ∪ FR2) ← R2)

= { (26) }

(FR1 ∪ FR2) ← (R1 ∪ R2)

⊆ { F is monotonic; (21) }

F(R1 ∪ R2) ← (R1 ∪ R2)

Eventually, we are in position to address the equivalence between Jacobs’ and Aczel-
Mendler’s definitions of bisimulation. To the set of known rules about (18) we add the
following law

(r · s◦) ← (f · g◦) = (r ← f) · (s ← g)◦ ⇐ pair r, s is a tabulation (29)

where a pair of functions A C
r�� s �� B form a tabulation iff split function 〈r, s〉

is injective, that is, iff r◦ · r ∩ s◦ · s = id holds 8.
Below we show that (29) is what matters in proving the equivalence between Jacobs’

definition of bisimulation (once PF-transformed) and that of Aczel & Mendler:

c(FR ← R)d
≡ { tabulate R = π1 · π◦

2 }
c(F(π1 · π◦

2) ← (π1 · π◦
2))d

≡ { relator commutes with composition and converse }
c(((Fπ1) · (Fπ2)◦) ← (π1 · π◦

2))d
≡ { new rule (29) }

c((Fπ1 ← π1) · ((Fπ2)◦ ← π◦
2))d

≡ { converse rule (20) }
c((Fπ1 ← π1) · (Fπ2 ← π2)◦)d

≡ { (5) }
〈∃ a :: c(Fπ1 ← π1)a ∧ d(Fπ2 ← π2)a〉

cf. X

c

��

Y
R��

d

��

Z
π1

������� π2

�������

a��
FZF π1

		���
� F π2

���
�

FX FY
F R

��

Clearly, the meaning of the last line above is exactly Aczel-Mendler’s definition (cf. dia-
gram): it states that there exists a coalgebra a whose carrier is the ”graph” of bisimula-
tion R and which is such that projections π1 and π2 lift to the corresponding coalgebra
morphisms.

8 The proof of (29) can be found in [14]. It is a standard result that every R can be factored in
a tabulation R = r · s◦ [7]. An obvious and easy to check tabulation is r, s := π1, π2 [14],
which boils down to pairwise equality: (b, a) = (d, c) equivalent to b = d ∧ a = c.

Calculating Invariants as Coreflexive Bisimulations 91

Note how simple the proof is. The elegance of the calculation lies in the synergy with
Reynolds’ arrow combinator. To the best of our knowledge, such a synergy is new in
the literature 9.

5 Calculating Invariants

Let us write FΦP ΦP
c�� to denote the fact that P is an invariant (9), which we

abbreviate to FΦ Φ
c�� since predicates and coreflexives are in one to one corre-

spondence. (We will use uppercase Greek letters to denote such coreflexives and will
refer to them as “invariants” with no further explanation.)

This notation suggests a category Pred of “predicates as objects” as a suitable uni-
verse for describing coalgebraic systems subject to invariants. Pred’s objects are pred-

icates, represented by coreflexives. An arrow Ψ Φ
f�� in Pred means a function

which ensures property Ψ on its output whenever property Φ holds on its input. Arrows
in Pred can therefore be seen as proof-obligations for the corresponding functions 10.
Formally:

Ψ Φ
f�� ≡ f(Ψ ← Φ)f ≡ f · Φ ⊆ Ψ · f (30)

Clearly, any relator (in Rel) restricts to a functor in Pred. In particular, the functorial

image of an arrow Ψ Φ
f�� is well-typed, cf.

FΨ FΦ
F f��

≡ { (30) }

F f · FΦ ⊆ FΨ · F f

≡ { functors }

F (f · Φ) ⊆ F (Ψ · f)

⇐ { F is monotone; (30) }

Ψ Φ
f��

Such a “predicates as types” view carries over universal constructs. As Pred’s hom
sets are included in Set, in order to verify whether a particular universal property in

9 For a longer bi-implication proof of this equivalence see Backhouse and Hoogendijk’s work
on final dialgebras [6]. A proof of the same result is implicit in Corollary 3.1 of [21] which
invokes a result by Carboni et al [8] on extending functors to relators.

10 See [16], where this view of proof obligations is actually extended to arbitrary binary relations.
This is suitable for specification languages such as eg. VDM, where the inclusion of a sub-
typing mechanism which allows truth-valued functions forces the type checking here to rely on
proofs [12].

92 L.S. Barbosa, J.N. Oliveira, and A. Silva

the latter lifts to a universal in Pred it is enough to check whether the corresponding
diagram exists and the universal arrow in Set is still an arrow in Pred. The fact that
composition satisfies constraints,

Ψ Φ
g·f�� ⇐ Ψ Υ

g�� ∧ Υ Φ
f�� (31)

stems directly from (30), as does the obvious rule concerning identity:

Ψ Φ
id�� ≡ Φ ⊆ Ψ (32)

(From (31) we infer also that exponential gΦ f = g · f is well-typed.) For a slightly
more elaborate example consider, for instance, functional products in the new setting:

Ψ Ψ × Υ
π1�� π2 �� Υ

Φ

f

��������������
〈f,g〉

��

g

������������

(33)

Clearly, the proof-obligations associated to the two projections

π1 · (Ψ × Υ) ⊆ Ψ · π1 , π2 · (Ψ × Υ) ⊆ Υ · π2

are instances of Reynolds abstraction theorem [20,25,2]:

GA FA
f�� is polymorphic ≡ 〈∀ R :: f(GR ← FR)f〉 (34)

So there is nothing to prove. To show that 〈f, g〉 is indeed an arrow in Pred we need to
recall the universal property of relational splits [7]

X ⊆ 〈R, S〉 ≡ π1 · X ⊆ R ∧ π2 · X ⊆ S (35)

and that ×-absorption holds. We reason 11:

Ψ × Υ Φ
〈f,g〉��

≡ { definition (30) }

〈f, g〉 · Φ ⊆ (Ψ × Υ) · 〈f, g〉
≡ { absorption law for relational product }

〈f, g〉 · Φ ⊆ 〈Ψ · f, Υ · g〉
≡ { universal law for relational product (35) }

π1 · 〈f, g〉 · Φ ⊆ Ψ · f ∧ π2 · 〈f, g〉 · Φ ⊆ Υ · g

11 Note that the ⇐ part of this equivalence is also ensured by the abstraction theorem (34) of the
split combinator (on functions).

Calculating Invariants as Coreflexive Bisimulations 93

≡ { cancellation law for functional product }

f · Φ ⊆ Ψ · f ∧ g · Φ ⊆ Υ · g

≡ { definition (30) twice }

Ψ Φ
f�� ∧ Υ Φ

g��

As expected, a coalgebra FΦ Φ
c�� in Pred maintains property Φ invariant.

F(νF) νF
out��

FΦ

F[(c)]

��

Φc
��

[(c)]

��

Final coalgebras (and initial algebras) exist and coincide with
the ones in Set. Let us check, in this respect, the diagram
of unfold (aside), where νF denotes the final coalgebra and
[(c)] is the coinductive extension, or unfold, of coalgebra c. We
reason:

νF Φ
[(c)]��

≡ { definition (30) }

[(c)] · Φ ⊆ [(c)]

⇐ { fusion: [(T)] · S ⊆ [(R)] ⇐ T · S ⊆ F S · R }

c · Φ ⊆ FΦ · c

≡ { definition (30) }

FΦ Φ
c��

We close this section by showing how the “invariants as bisimulations” approach
helps in developing of a number of simple, yet powerful rules to reason about “invariant-
typed” coalgebras. Our calculations below address three such rules.

Separation rule:

F (Φ · Ψ) Φ · Ψc�� ⇐ FΦ Φ
c�� ∧ FΨ Ψ

c�� (36)

This rule enables the decomposition of the proof obligation of a compound invariant
into two separate proof obligations, one per conjunct. Its calculation is as follows:

FΦ Φ
c�� ∧ FΨ Ψ

c��

≡ { (30) twice }

c · Φ ⊆ FΦ · c ∧ c · Ψ ⊆ FΨ · c

⇒ { monotonicity of composition (twice) }

c · Φ · Ψ ⊆ FΦ · c · Ψ ∧ FΦ · c · Ψ ⊆ FΦ · FΨ · c

94 L.S. Barbosa, J.N. Oliveira, and A. Silva

⇒ { transitivity }

c · Φ · Ψ ⊆ FΦ · (FΨ · c)
≡ { relator F and (30) }

F (Φ · Ψ) Φ · Ψc��

Interleaving rule:

F (Φ × Ψ) Φ × Ψ
c�d�� ⇐ FΦ Φ

c�� ∧ FΨ Ψ
d�� (37)

where � is an interleaving operator defined by c � d
def= δ · (c × d) whenever F has a

distributive law δ : FΦ × FΨ −→ F (Φ × Ψ) corresponding to the Kleisli composition
of F’s left and right strength (see [13] for details). The calculation of (37) follows:

FΦ Φ
c�� ∧ FΨ Ψ

d��

≡ { (30) twice }

c · Φ ⊆ FΦ · c ∧ d · Ψ ⊆ FΨ · d
⇒ { monotonicity of product and composition }

δ · (c · Φ × d · Ψ) ⊆ δ · (FΦ · c × FΨ · d)

⇒ { × relator }

δ · (c × d) · (Φ × Ψ) ⊆ δ · (FΦ × FΨ) · (c × d)

⇒ { δ’s free theorem (34) }

δ · (c × d) · (Φ × Ψ) ⊆ F (Φ × Ψ) · δ · (c × d)

≡ { definition of c � d and (30) }

F (Φ × Ψ) Φ × Ψ
c�d��

Pipeline. For F a monad,

FΦ Φ
c•d�� ⇐ FΦ Φ

c�� ∧ FΦ Φ
d�� (38)

where c • d corresponds to the Kleisli composition of c and d. We calculate:

(c • d) · Φ

= { definition of Kleisli composition }

μ · F c · d · Φ

⊆ { FΦ Φ
d�� and monotonicity }

Calculating Invariants as Coreflexive Bisimulations 95

μ · F c · FΦ · d

= { F relator }

μ · F (c · Φ) · d
⊆ { FΦ Φ

c�� and monotonicity }

μ · F (FΦ · c) · d
= { F relator and μ’s free theorem (34) }

FΦ · μ · F c · d

= { definition of Kleisli composition }

FΦ · (c • d)

6 Calculating Assertions

As mentioned in the introduction to this paper, the third main ingredient of coalgebraic
reasoning identified in [11] is a language of modal assertions in which specifications
of the behaviour of systems can be expressed. Clearly, invariants bring about a “next
time” modal operator,

c(FΦ ← Φ)c ≡ c · Φ ⊆ FΦ · c
≡ { shunting (10) }

Φ ⊆ c◦ · (FΦ) · c
︸ ︷︷ ︸

©cΦ

(39)

which holds for those states whose all immediate successors, if any, satisfy Φ. From this
a PF-definition of the “next time Φ holds” modal operator emerges

©c Φ
def= c◦ · (FΦ) · c (40)

which PF-transforms Def. 4.3.1 of [11]. So, assertion Φ ⊆ ©cΦ is an alternative state-
ment of “Φ in an invariant” for coalgebra c.

This modal operator is easily shown to be the upper adjoint of Galois connection

πcΦ ⊆ Ψ ≡ Φ ⊆ ©cΨ (41)

whose lower adjoint is the projection operator πcΦ
def= c·Φ·c◦ which is central to [15] in

studying the PF-refactoring of data dependency theory (a part of database theory). From
this, one immediately infers that ©c is monotonic and distributes over conjunction:
©c(Φ·Ψ) = (©cΦ)·(©cΨ). Note that we express conjunction by composition because
these two operators coincide on coreflexives:

Φ ∩ Ψ = Φ · Ψ (42)

96 L.S. Barbosa, J.N. Oliveira, and A. Silva

Such properties can then be used to reason about operator ©c, as in, for example,

Φ is an invariant

≡ { (39) }

Φ ⊆ ©cΦ

⇒ { monotonicity of ©c stemming from (41) }

©cΦ ⊆ ©c(©cΦ)

≡ { (39) }

©cΦ is an invariant

The whole construction of a modal logic relative to a coalgebra c, which is the basis
of assertion reasoning in coalgebra theory, can be pursued along similar lines. Consider,
for example, the definition of �P , the henceforth P operator of [11, Def. 4.2.8]:

(�P)x def= 〈∃ Q : Q is invariant : Q ⊆ P ∧ (Q x)〉

Converting predicates P and Q to coreflexives Φ and Ψ , respectively, and making ex-
plicit the supremum implicit in the existential quantification one gets,

�Φ = 〈
⋃

Ψ : Ψ ⊆ ©cΨ : Ψ ⊆ Φ〉

= { trading [4] }

〈
⋃

Ψ :: Ψ ⊆ ©cΨ ∧ Ψ ⊆ Φ〉

= { ∩-universal }

〈
⋃

Ψ :: Ψ ⊆ ©cΨ ∩ Φ〉

= { ∩ of coreflexives is composition (42) }

〈
⋃

Ψ : : Ψ ⊆ Φ · ©cΨ〉

which leads to a greatest (post)fixpoint definition:

�Φ = 〈ν Ψ : : Φ · ©cΨ〉 (43)

We end this section by showing how the PF-transform (and in particular the replace-
ment of intersection of coreflexives by composition (42)) together with the fixpoint
calculus [3] speed up derivation of laws in such a logic. The law we have chosen to
calculate is Lemma 4.2.9(ii) of [11]: �Φ ⊆ ��Φ. We drop subscript c of ©c (for
economy of notation) and calculate:

�Φ ⊆ ��Φ

≡ { (43) }

Calculating Invariants as Coreflexive Bisimulations 97

�Φ ⊆ 〈ν Ψ :: (�Φ) · ©Ψ〉
⇐ { greatest fixed point induction: x ≤ fx ⇒ x ≤ νf [3] }

�Φ ⊆ �Φ · ©(�Φ)

≡ { �Φ · Φ = �Φ thanks to (42), since �Φ ⊆ Φ }

�Φ ⊆ �Φ · Φ · ©(�Φ)

≡ { property (for Φ coreflexive) Φ · R ⊆ S ≡ Φ · R ⊆ Φ · S }

�Φ ⊆ Φ · ©(�Φ)

≡ { (43) and fixpoint calculus (νf ⊆ fνf) }
true

7 Epilogue

Invariants are constraints on the carrier of coalgebras which restrict their behavior in
some desirable way but whose maintenance entails some kind of proof obligation dis-
charge. An approach is put forward in this paper for reasoning about coalgebraic invari-
ants which is both compositional and calculational: compositional because it is based
on rules which break the complexity of such proof obligations across the structures
involved; calculational because such rules are derived thanks to an algebra of invari-
ants regarded as coreflexive bisimulations, which is what invariants are once encoded
in the language of binary relations. Such calculational capabilities arise, in turn, from
encoding bisimulations as instances of Reynolds relation on functions. In this process,
functors which capture coalgebras’ dynamics are generalized to relators and the objects
of the underlying category are generalized to predicates.

The main contribution of the paper is the explicit adoption of such a construc-
tive, calculational style in approaching the problem. Both [21,6] already suggest a
relational/relator-based approach to bisimulation, [6] actually generalizing from coalge-
bras to dialgebras. However, no relationship is established with the algebra of Reynolds
relation on functions which, in close association with Reynolds abstraction theorem,
naturally leads to a category (Pred) whose objects are predicates (invariants).

In a wider context, the explicit adoption of such a category has potential to support a
constructive discipline of extended static checking (ESC) in a coalgebraic view of com-
puter systems, but surely there is much work to be done before this becomes of practical
use.On the theory side, theauthorswould like to investigateapossibleconnectionbetween
the “predicates as objects” approach and Frege structures [10] 12. Quoting this reference:

A Frege structure is a lambda structure F on the set A together with a desig-
nated subset of A whose elements are called propositions (...) the propositional
connectives are required to yield propositions as values only when they operate
on propositions as arguments.

This is regarded as an interesting topic for future research.

12 We thank Peter Dybjer for pointing out this possibility.

98 L.S. Barbosa, J.N. Oliveira, and A. Silva

References

1. Aczel, P., Mendler, N.: A final coalgebra theorem. In: Category Theory and Computer Sci-
ence, London, UK, pp. 357–365. Springer, Heidelberg (1989)

2. Backhouse, K., Backhouse, R.C.: Safety of abstract interpretations for free, via logical rela-
tions and Galois connections. SCP 15(1–2), 153–196 (2004)

3. Backhouse, R.: Galois connections and fixed point calculus. In: Crole, R., Backhouse, R.,
Gibbons, J. (eds.) Algebraic and Coalgebraic Methods in the Mathematics of Program Con-
stuction. LNCS, vol. 2297, pp. 89–148. Springer, Heidelberg (2002)

4. Backhouse, R., Michaelis, D.: Exercises in quantifier manipulation. In: Uustalu, T. (ed.) MPC
2006. LNCS, vol. 4014, pp. 70–81. Springer, Heidelberg (2006)

5. Backhouse, R.C., de Bruin, P., Hoogendijk, P., Malcolm, G., Voermans, T.S., van der Woude,
J.: Polynomial relators. In: AMAST 1991, pp. 303–362. Springer, Heidelberg (1992)

6. Backhouse, R.C., Hoogendijk, P.F.: Final dialgebras: From categories to allegories. Informa-
tique Theorique et Applications 33(4/5), 401–426 (1999)

7. Bird, R., de Moor, O.: Algebra of Programming. Hoare, C.A.R.(series ed.). Se-
ries in Computer Science. Prentice-Hall International, Englewood Cliffs (1997),
http://www.phptr.com/ptrbooks/ptr 013507245x.html

8. Carboni, A., Kelly, G., Wood, R.: A 2-categorical approach to change of base and geometric
morphisms I. Technical Report 90-1, Dept. of Pure Maths, Univ. Sydney (1990)

9. Freyd, P.J., Ščedrov, A.: Categories, Allegories. Mathematical Library, vol. 39. North-
Holland, Amsterdam (1990)

10. Hatcher, W.S.: Review: Peter Aczel. Frege structures and the notions of proposition, truth
and set. The Journal of Symbolic Logic 51(1), 244–246 (1986)

11. Jacobs, B.: Introduction to Coalgebra. Towards Mathematics of States and Observations.
Draft Copy. Institute for Computing and Information Sciences, Radboud University Ni-
jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

12. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall Int., Englewood
Cliffs (1986)

13. Kock, A.: Strong functors and monoidal monads. Archiv für Mathematik 23, 113–120 (1972)
14. Oliveira, J.N.: Invariants as coreflexive bisimulations — in a coalgebraic setting, Presentation

at the IFIP WG 2.1 #62 Meeting Namur (December 2006)
15. Oliveira, J.N.: Pointfree foundations for (generic) lossless decomposition (submitted, 2007)
16. Oliveira, J.N.: Theory and applications of the PF-transform, Tutorial at LerNET 2008,

Piriàpolis, Uruguay (slides available from the author’s website) (February 2008)
17. Oliveira, J.N., Rodrigues, C.J.: Pointfree factorization of operation refinement. In: Misra,

J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 236–251. Springer,
Heidelberg (2006)

18. Park, D.: Concurrency and automata on infinite sequences. LNCS, vol. 104, pp. 561–572.
Springer, Heidelberg (1981)

19. Pratt, V.: Origins of the calculus of binary relations. In: Proc. of the 7th Annual IEEE Symp.
on Logic in Computer Science, Santa Cruz, CA, pp. 248–254. IEEE Computer Society Press,
Los Alamitos (1992)

20. Reynolds, J.C.: Types, abstraction and parametric polymorphism. Information Processing 83,
513–523 (1983)

21. Rutten, J.J.M.M.: Relators and metric bisimulations. ENTCS 11, 1–7 (1998)
22. Rutten, J.J.M.M.: Coalgebraic foundations of linear systems. In: Mossakowski, T., Mon-

tanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 425–446. Springer,
Heidelberg (2007)

http://www.phptr.com/ptrbooks/ptr_013507245x.html

Calculating Invariants as Coreflexive Bisimulations 99

23. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. American Mathe-
matical Society, vol. 41. AMS Colloquium Publications, Providence (1987)

24. Vaccari, M.: Calculational derivation of circuits. PhD thesis, Univ. S. Milano (1998)
25. Wadler, P.L.: Theorems for free! In: 4th Int. Symp. on FPLCA, London, September 1989.

ACM Press, New York (1989)

	Calculating Invariants as Coreflexive Bisimulations
	Introduction
	Invariants PF-Transformed
	Invariants Are Bisimulations
	Calculating Bisimulations
	Calculating Invariants
	Calculating Assertions
	Epilogue

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

