3,680 research outputs found

    Dynamic remapping decisions in multi-phase parallel computations

    Get PDF
    The effectiveness of any given mapping of workload to processors in a parallel system is dependent on the stochastic behavior of the workload. Program behavior is often characterized by a sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly stable, but may become quite different during the next phase. Thus a workload assignment generated for one phase may hinder performance during the next phase. We consider the problem of deciding whether to remap a paralled computation in the face of uncertainty in remapping's utility. Fundamentally, it is necessary to balance the expected remapping performance gain against the delay cost of remapping. This paper treats this problem formally by constructing a probabilistic model of a computation with at most two phases. We use stochastic dynamic programming to show that the remapping decision policy which minimizes the expected running time of the computation has an extremely simple structure: the optimal decision at any step is followed by comparing the probability of remapping gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal performance to imprecise decision threshold. Under a wide range of model parameter values, we find nearly optimal performance if remapping is chosen simply when the gain probability is high. These results strongly suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change; precise quantification of the decision model parameters is not necessary

    An optimal repartitioning decision policy

    Get PDF
    A central problem to parallel processing is the determination of an effective partitioning of workload to processors. The effectiveness of any given partition is dependent on the stochastic nature of the workload. The problem of determining when and if the stochastic behavior of the workload has changed enough to warrant the calculation of a new partition is treated. The problem is modeled as a Markov decision process, and an optimal decision policy is derived. Quantification of this policy is usually intractable. A heuristic policy which performs nearly optimally is investigated empirically. The results suggest that the detection of change is the predominant issue in this problem

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, β\beta. We find that while the observed value β=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value

    The Coupled Electronic-Ionic Monte Carlo Simulation Method

    Get PDF
    Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accurate and general methods for computing total electronic energies. We will review methods we have developed to perform QMC for the electrons coupled to a classical Monte Carlo simulation of the ions. In this method, one estimates the Born-Oppenheimer energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the energy is used in a Metropolis simulation of the ionic degrees of freedom. Important aspects of this method are how to deal with the noise, which QMC method and which trial function to use, how to deal with generalized boundary conditions on the wave function so as to reduce the finite size effects. We discuss some advantages of the CEIMC method concerning how the quantum effects of the ionic degrees of freedom can be included and how the boundary conditions can be integrated over. Using these methods, we have performed simulations of liquid H2 and metallic H on a parallel computer.Comment: 27 pages, 10 figure

    Cognitive behaviour therapy versus counselling intervention for anxiety in young people with high-functioning autism spectrum disorders: a pilot randomised controlled trial

    Get PDF
    The use of cognitive-behavioural therapy (CBT) as a treatment for children and adolescents with autism spectrum disorder (ASD) has been explored in a number of trials. Whilst CBT appears superior to no treatment or treatment as usual, few studies have assessed CBT against a control group receiving an alternative therapy. Our randomised controlled trial compared use of CBT against person-centred counselling for anxiety in 36 young people with ASD, ages 12–18. Outcome measures included parent- teacher- and self-reports of anxiety and social disability. Whilst each therapy produced improvements inparticipants, neither therapy was superior to the other to a significant degree on any measure. This is consistent with findings for adults

    Presolar He and Ne Isotopes in Single Circumstellar SiC Grains

    Get PDF
    Noble gas isotopes in presolar silicon carbide (SiC) dust grains from primitive meteorites provide, together with major element isotopic compositions, insight into the nucleosynthetic output of different types of evolved stars >4.5 Gyr ago. We report here new results from helium and neon isotopic analyses of single presolar SiC grains with sizes between 0.6 and 6.3 μm using an ultrahigh sensitivity mass spectrometer. These noble gas studies were complemented by an ion microprobe study (NanoSIMS) of Si, C, and N isotopic compositions of the same grains. About 40%, or 46 of the 110 grains analyzed, contain nucleosynthetic 22Ne and/or 4He from their parent stars above our mass spectrometer's detection limit. We discuss the possible stellar sources using isotopic ratios as constraints combined with new model predictions for low- to intermediate-mass (1.5, 2, 3, and 5 M☉) asymptotic giant branch (AGB) stars of different metallicities (1, 1/2, 1/3, and 1/6 Z☉). Most SiC grains are of the mainstream type and originated in low-mass AGB stars. We find a higher-than-expected percentage of A/B type grains, with some containing 22Ne and/or 4He. In addition, we find one noble gas-rich nova grain candidate, one supernova grain (X-type grain), and one 22Ne-rich X- or Z-type grain candidate

    The Interstellar Environment of our Galaxy

    Get PDF
    We review the current knowledge and understanding of the interstellar medium of our galaxy. We first present each of the three basic constituents - ordinary matter, cosmic rays, and magnetic fields - of the interstellar medium, laying emphasis on their physical and chemical properties inferred from a broad range of observations. We then position the different interstellar constituents, both with respect to each other and with respect to stars, within the general galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts

    A Constrained Path Monte Carlo Method for Fermion Ground States

    Full text link
    We describe and discuss a recently proposed quantum Monte Carlo algorithm to compute the ground-state properties of various systems of interacting fermions. In this method, the ground state is projected from an initial wave function by a branching random walk in an over-complete basis of Slater determinants. By constraining the determinants according to a trial wave function ∣ψT⟩|\psi_T\rangle, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if ∣ψT⟩|\psi_T\rangle is exact. We illustrate the method by describing in detail its implementation for the two-dimensional one-band Hubbard model. We show results for lattice sizes up to 16×1616\times 16 and for various electron fillings and interaction strengths. Besides highly accurate estimates of the ground-state energy, we find that the method also yields reliable estimates of other ground-state observables, such as superconducting pairing correlation functions. We conclude by discussing possible extensions of the algorithm.Comment: 29 pages, RevTex, 3 figures included; submitted to Phys. Rev.

    The Function and Organization of Lateral Prefrontal Cortex: A Test of Competing Hypotheses

    Get PDF
    The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms
    • …
    corecore