1,820 research outputs found
Recommended from our members
Research priorities for data collection and management within global acute and emergency care systems.
Barriers to global emergency care development include a critical lack of data in several areas, including limited documentation of the acute disease burden, lack of agreement on essential components of acute care systems, and a lack of consensus on key analytic elements, such as diagnostic classification schemes and regionally appropriate metrics for impact evaluation. These data gaps obscure the profound health effects of lack of emergency care access in low- and middle-income countries (LMICs). As part of the Academic Emergency Medicine consensus conference "Global Health and Emergency Care: A Research Agenda," a breakout group sought to develop a priority research agenda for data collection and management within global emergency care systems
Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search
During their trajectories in still air, fruit flies (Drosophila melanogaster) explore their landscape using a series of straight flight paths punctuated by rapid 90° body-saccades [1]. Some saccades are triggered by visual expansion associated with collision avoidance. Yet many saccades are not triggered by visual cues, but rather appear spontaneously. Our analysis reveals that the control of these visually independent saccades and the flight intervals between them constitute an optimal scale-free active searching strategy. Two characteristics of mathematical optimality that are apparent during free-flight in Drosophila are inter-saccade interval lengths distributed according to an inverse square law, which does not vary across landscape scale, and 90° saccade angles, which increase the likelihood that territory will be revisited and thereby reduce the likelihood that near-by targets will be missed. We also show that searching is intermittent, such that active searching phases randomly alternate with relocation phases. Behaviorally, this intermittency is reflected in frequently occurring short, slow speed inter-saccade intervals randomly alternating with rarer, longer, faster inter-saccade intervals. Searching patterns that scale similarly across orders of magnitude of length (i.e., scale-free) have been revealed in animals as diverse as microzooplankton, bumblebees, albatrosses, and spider monkeys, but these do not appear to be optimised with respect to turning angle, whereas Drosophila free-flight search does. Also, intermittent searching patterns, such as those reported here for Drosophila, have been observed in foragers such as planktivorous fish and ground foraging birds. Our results with freely flying Drosophila may constitute the first reported example of searching behaviour that is both scale-free and intermittent
Variability of the Accretion Stream in the Eclipsing Polar EP Dra
We present the first high time resolution light curves for six eclipses of
the magnetic cataclysmic variable EP Dra, taken using the superconducting
tunnel junction imager S-Cam2. The system shows a varying eclipse profile
between consecutive eclipses over the two nights of observation. We attribute
the variable stream eclipse after accretion region ingress to a variation in
the amount and location of bright material in the accretion stream. This
material creates an accretion curtain as it is threaded by many field lines
along the accretion stream trajectory. We identify this as the cause of
absorption evident in the light curves when the system is in a high accretion
state. We do not see direct evidence in the light curves for an accretion spot
on the white dwarf; however, the variation of the stream brightness with the
brightness of the rapid decline in flux at eclipse ingress indicates the
presence of some form of accretion region. This accretion region is most likely
located at high colatitude on the white dwarf surface, forming an arc shape at
the foot points of the many field lines channeling the accretion curtain.Comment: Accepted for publication in MNRAS (7 pages
Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture
<p>Abstract</p> <p>Background</p> <p>In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR) spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1) was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles.</p> <p>Results</p> <p>Buffalo green monkey kidney (BGMK) cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.). A partial least squares (PLS) regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV) of 17 plaque forming units (PFU)/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 10<sup>3 </sup>to 10<sup>6 </sup>PFU/ml, could also be reliably detected.</p> <p>Conclusions</p> <p>This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and medical diagnostics.</p
Photoionization of High Altitude Gas in a Supernova-Driven Turbulent Interstellar Medium
We investigate models for the photoionization of the widespread diffuse
ionized gas in galaxies. In particular we address the long standing question of
the penetration of Lyman continuum photons from sources close to the galactic
midplane to large heights in the galactic halo. We find that recent
hydrodynamical simulations of a supernova-driven interstellar medium have low
density paths and voids that allow for ionizing photons from midplane OB stars
to reach and ionize gas many kiloparsecs above the midplane. We find ionizing
fluxes throughout our simulation grids are larger than predicted by one
dimensional slab models, thus allowing for photoionization by O stars of low
altitude neutral clouds in the Galaxy that are also detected in Halpha. In
previous studies of such clouds the photoionization scenario had been rejected
and the Halpha had been attributed to enhanced cosmic ray ionization or
scattered light from midplane H II regions. We do find that the emission
measure distributions in our simulations are wider than those derived from
Halpha observations in the Milky Way. In addition, the horizontally averaged
height dependence of the gas density in the hydrodynamical models is lower than
inferred in the Galaxy. These discrepancies are likely due to the absence of
magnetic fields in the hydrodynamic simulations and we discuss how
magnetohydrodynamic effects may reconcile models and observations.
Nevertheless, we anticipate that the inclusion of magnetic fields in the
dynamical simulations will not alter our primary finding that midplane OB stars
are capable of producing high altitude diffuse ionized gas in a realistic
three-dimensional interstellar medium.Comment: ApJ accepted. 17 pages, 7 figure
A Dynamical Study of the Black Hole X-ray Binary Nova Muscae 1991
We present a dynamical study of the Galactic black hole binary system Nova
Muscae 1991 (GS/GRS 1124-683). We utilize 72 high resolution Magellan
Echellette (MagE) spectra and 72 strictly simultaneous V-band photometric
observations; the simultaneity is a unique and crucial feature of this
dynamical study. The data were taken on two consecutive nights and cover the
full 10.4-hour orbital cycle. The radial velocities of the secondary star are
determined by cross-correlating the object spectra with the best-match template
spectrum obtained using the same instrument configuration. Based on our
independent analysis of five orders of the echellette spectrum, the
semi-amplitude of the radial velocity of the secondary is measured to be K_2 =
406.8+/-2.7 km/s, which is consistent with previous work, while the uncertainty
is reduced by a factor of 3. The corresponding mass function is f(M) =
3.02+/-0.06 M_\odot. We have also obtained an accurate measurement of the
rotational broadening of the stellar absorption lines (v sin i = 85.0+/-2.6
km/s) and hence the mass ratio of the system q = 0.079+/-0.007. Finally, we
have measured the spectrum of the non-stellar component of emission that veils
the spectrum of the secondary. In a future paper, we will use our
veiling-corrected spectrum of the secondary and accurate values of K_2 and q to
model multi-color light curves and determine the systemic inclination and the
mass of the black hole.Comment: ApJ accepted version; minor revision; added a subsection about
systematic uncertaintie
Relations Between Stream Chemistry, Fish Diversity, and Land Use in the Upper Little Miami Watershed
Streams are susceptible to numerous threats to their water quality and biodiversity. In southwest Ohio a major driver of these impacts is associated with current agricultural practices and associated legacy effects. These structural and chemical impacts are known to affect biodiversity in these streams. The objective of this study was to document and examine relationships among land-use/land cover, stream chemistry, and fish diversity in the headwaters streams of the Little Miami Watershed. Three streams (Little Miami River, Massies Creek - North Fork, and Massies Creek - South Fork) were sampled in the upper headwaters as well as downstream. Air and water temperature, pH, dissolved oxygen, alkalinity, hardness and turbidity were measured in early September and late November. With the exception of temperature, the measurement of these parameters was generally consistent between sampling periods (CV \u3c 22). A total of 517 fish were collected using an electroshock backpack along 75m stretches at the sites (N = 6). In total 25 species were identified while individual sites yielded 7 - 12 species each. Fish diversity (Simpson’s Diversity, 1 - D) at our sites ranged between 0.77 and 0.86. A significant correlation (r = 0.918, p = 0.01) was found between fish diversity and the % of developed land in these watersheds. Our landscape analysis revealed that all six watersheds had 86 - 97% agricultural land use which had a negative (r = - 0.796), but not statistically significant correlation (p = 0.0581) impact on fish diversity. This work will serve as the baseline for future study of land use impacts on fish diversity, phylogeography, and water quality
The Clinical Application of Polarization Pattern Perception
Purpose: Determine the repeatability of and optimum stimulus parameters for testing polarization pattern perception in a real-world clinical population, and assess the ability of polarization perception to distinguish normal from abnormal eyes. Methods: Polarization perception was evaluated in staff and patients attending ophthalmology clinics at Warwick Hospital, UK. A series of visual stimuli were presented in pseudorandom order using a liquid-crystal-display–based polarization pattern generator. Stimuli included geometric patterns, gratings, checkerboards, and optotypes. Participants had one or both eyes diagnosed as normal or abnormal following ophthalmic examination, optical coherence tomography, and measures of visual acuity. Measurement scores were assigned to the eye(s) of each participant depending on the total number of stimuli perceived or identified. Results: Stimuli covered the range of spatial scales resolvable within polarization perception by normal and abnormal eyes. Different stimuli had different saliencies. For each stimulus type, polarization perception in the abnormal group was significantly reduced compared with normal eyes (P < 0.001). Relative stimulus salience was broadly similar for normal-eye and abnormal-eye viewing groups, being greatest for radially symmetric patterns and least for optotypes. Checkerboard pattern salience had an inverse logarithmic relationship with check fundamental spatial frequency. A devised metric covering the dynamic range of polarization perception was repeatable, and the score derived from the metric was reduced in the abnormal group compared with the normal group (P < 0.001). Conclusions: Clinically useful metrics of polarization perception distinguish between normal and abnormal eyes. Translational Relevance: Perception of spatial patterns formed of non-uniform polarization fields has potential as a quantitative clinical diagnostic measuremen
- …