173 research outputs found

    Steroid hormones content and proteomic analysis of canine follicular fluid during the preovulatory period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Follicular fluid contains substances involved in follicle activity, cell differentiation and oocyte maturation. Studies of its components may contribute to better understanding of the mechanisms underlying follicular development and oocyte quality. The canine species is characterized by several ovarian activity features that are not extensively described such as preovulatory luteinization, oocyte ovulated at the GV stage (prophase 1) and poly-oocytic follicles. In this study, we examined the hypothesis that the preovulatory LH surge is associated with changes in steroid and protein content of canine follicular fluid prior to ovulation.</p> <p>Methods</p> <p>Follicular fluid samples were collected from canine ovaries during the preovulatory phase, before (pre-LH; n = 16 bitches) and after (post-LH; n = 16) the LH surge. Blood was simultaneously collected. Steroids were assayed by radioimmunoassay and proteomic analyses were carried out by 2D-PAGE and mass spectrometry.</p> <p>Results</p> <p>The concentrations of 17beta-estradiol and progesterone at the pre-LH stage were 737.2 +/- 43.5 ng/ml and 2630.1 +/- 287.2 ng/ml in follicular fluid vs. 53 +/- 4.1 pg/ml and 3.9 +/- 0.3 ng/ml in plasma, respectively. At that stage, significant positive correlations between follicular size and intra-follicular steroid concentrations were recorded. After the LH peak, the intrafollicular concentration of 17beta-estradiol decreased significantly (48.3 +/- 4.4 ng/ml; p < 0.001), whereas that of progesterone increased (11690.2 +/- 693.6 ng/ml; p < 0.001). Plasmatic concentration of 17beta-estradiol was not modified (49 +/- 9.6 pg/ml) after the LH peak, but that of progesterone significantly increased (9.8 +/- 0.63 ng/ml).</p> <p>Proteomic analysis of canine follicular fluid identified 38 protein spots, corresponding to 21 proteins, some of which are known to play roles in the ovarian physiology. The comparison of 2D-PAGE patterns of follicular fluids from the pre- and post-LH stages demonstrated 3 differentially stained single spot or groups of spots. One of them was identified as complement factor B. A comparison of follicular fluid and plasma protein patterns demonstrated a group of 4 spots that were more concentrated in plasma than in follicular fluid, and a single spot specific to follicular fluid. These proteins were identified as gelsolin and clusterin, respectively.</p> <p>Conclusion</p> <p>Our results provide the first demonstration of size-related changes in the steroid concentrations in canine follicular fluid associated with the LH surge. 2D protein mapping allowed identification of several proteins that may play a role in follicle physiology and ovarian activity at the preovulatory stage. This may help in the future to explain and to better understand the species specificities that are described in dogs.</p

    Passive immune transfer in puppies

    Get PDF
    Le chiot nait presque agammaglobulinĂ©mique. Il acquiert une immunitĂ© passive systĂ©mique grĂące au colostrum au cours des deux premiers jours de vie, La qualitĂ© du transfert d’immunitĂ© passive (apprĂ©ciĂ©e par la concentration circulante des IgG Ă  deux jours de vie) a un impact sur la santĂ© du chiot et sur son taux de mortalitĂ© (multipliĂ© par neuf en cas de dĂ©ficit de transfert) mais interfĂšre avec l’efficacitĂ© vaccinale. Elle est trĂšs variable entre portĂ©es ainsi qu’entre les chiots d’une mĂȘme portĂ©e. La concentration des IgG du colostrum semble avoir peu d’impact sur la qualitĂ© du transfert de l’immunitĂ© passive. Ce transfert dĂ©pend davantage du dĂ©lai Ă©coulĂ© entre la naissance et l’ingestion du colostrum du fait, du cĂŽtĂ© maternel, de la dĂ©tĂ©rioration rapide de la qualitĂ© immunologique du colostrum (qui chute de plus de 50% au cours des 24 premiĂšres heures post partum) et du cĂŽtĂ© du nouveau-nĂ©, de la fermeture de la barriĂšre intestinale (la permĂ©abilitĂ© de l’intestin du chiot aux IgG diminue de moitiĂ© toutes les quatre heures pour devenir nulle au-delĂ  de 12 heures de vie). L’activitĂ© sĂ©rique des gammaglutamyltranfĂ©rases permet le diagnostic du dĂ©ficit de transfert d’immunitĂ© passive (sensibilitĂ© : 87,5% ; spĂ©cificitĂ© : 80%). Ce dĂ©ficit peut Ă©galement ĂȘtre diagnostiquĂ© par le calcul du taux de croissance entre la naissance et l’ñge de deux jours (sensibilitĂ© : 96,3% ; spĂ©cificitĂ© : 83,1%). En l’absence de colostrum, peu de solutions sont disponibles pour faire acquĂ©rir un transfert d’immunitĂ© adĂ©quat : la constitution d’une banque de colostrum est la solution optimale. Outre le transfert d’immunitĂ© systĂ©mique, les anticorps maternels (principalement les IgA) assurent une immunitĂ© locale, digestive dont les rĂŽles Ă  moyen terme pour la protection du chiot contre les entĂ©ropathogĂšnes et, Ă  long terme dans l’éduction du systĂšme immunitaire digestif, restent Ă  explorer.The puppy, born without immunoglobulins G (IgG), acquires a passive systemic immunity thanks to colostrum during the two first days of life. The quality of passive immune transfer (i.e. blood IgG concentration at two days of age) impacts puppy’s health and its mortality rate but interferes with response to vaccination. It is highly variable between litters and between puppies within litters. Colostrum IgG concentration is of very limited influence on passive immune transfer, which rather depends on the time elapsed between birth and ingestion of colostrum. Deficit in passive immune transfer can be diagnosed through blood gammaglutamyltranferases assay and growth rate over the two first days of life. Colostrum banking is the optimal solution for orphan puppies. In addition to systemic passive immune transfer, maternal antibodies (mainly IgA) would provide local (digestive) immunity, ensuring mid-term protection of the puppies gut together with probably long term training of the digestive immune system

    In vitro maturation of canine oocyte

    Get PDF
    Compared to other mammals, the canine oocyte offers a very unusual model of meiosis. Its maturation in vitro, studied only over the past ten years, is still poorly controlled: low rate of metaphase II (10 to 20% vs. over 90% in cattle), and high rate of degeneration in cultures (20 to 60%) despite attempts to improve culture media. However, in dogs as well as in canidae threatened by extinction, in vitro maturation is a key step for reproductive biotechnologies, such as in vitro fertilization and embryo production. It is therefore urgent to improve our understanding of the canine oocyte to improve maturation rates. We initiated studies on oocyte maturation in bitches. We examined the role of cAMP in the resumption of meiosis in vitro in bitches, using substances which reduce (Rp-cAMP) or increase (dbcAMP and forskolin) its level inside the oocyte. We also used denuded oocytes to prevent any cAMP supply from the granulosa cells. With this model, we showed that cAMP might play a role in maintaining meiosis, and that the resumption of meiosis may also be controlled by another pathway, possibly involving calcium. Another of our research projects explores changes in the oocyte ultrastructure during in vivo and in vitro maturation. Transmission electron microscopy may provide precise information on possible cytoplasmic anomalies induced by maturation. This fundamental work will eventually help us improve in vitro maturation of canine oocytes.L'ovocyte de chienne constitue un modĂšle de mĂ©iose trĂšs particulier parmi les mammifĂšres. Sa maturation in vitro, Ă©tudiĂ©e depuis une dizaine d'annĂ©es seulement, reste trĂšs mal maĂźtrisĂ©e : faible taux de mĂ©taphase II (10 Ă  20 % contre plus de 90 % chez les bovins) et fort taux de dĂ©gĂ©nĂ©rescence en culture (20 Ă  60 %) malgrĂ© les essais d'amĂ©lioration des milieux de culture. Or la maturation in vitro est une Ă©tape indispensable pour avoir accĂšs, tant chez le chien que chez les CanidĂ©s en voie de disparition, aux biotechnologies de la reproduction (fĂ©condation et production d'embryons in vitro notamment). Il est indispensable de mieux comprendre la biologie de l'ovocyte chez la chienne pour amĂ©liorer les taux de maturation. Nous nous sommes intĂ©ressĂ©es, en premier lieu, au rĂŽle de l'AMPc dans la reprise de la mĂ©iose in vitro. Nous avons modulĂ© la concentration intraovocytaire d'AMPc en soumettant les ovocytes Ă  des molĂ©cules qui la diminuent (Rp-AMPc) ou l'augmentent (dbAMPc et forskoline), ou en dĂ©nudant l'ovocyte pour arrĂȘter tout apport par les cellules du cumulus. Nous avons ainsi montrĂ© que l'AMPc jouerait un rĂŽle dans la poursuite de la mĂ©iose dont la reprise serait Ă©galement contrĂŽlĂ©e par une autre voie, peut-ĂȘtre calcique. En parallĂšle, nous explorons l'Ă©volution de l'ultrastructure de l'ovocyte au cours de la maturation in vivo et in vitro, pour dĂ©tecter les anomalies cytoplasmiques qui peuvent apparaĂźtre au cours de la maturation

    Polyovular ovarian follicles: physiological and not so rare

    Get PDF
    In mammalian ovaries, the vast majority of follicles contain only one oocyte. However, follicles containing several oocytes, or polyovular follicles, are also found in most species. Their frequency ranges from < 0.1% to 14% of the total number of follicles, and they can contain from 2 to 17 oocytes (or even 100 in certain marsupials). Three hypotheses have been proposed to explain their occurrence: division of an oocyte initially containing several nuclei, fusion of several different follicles, or nonseparation of several oocytes at the time of the formation of the primordial follicles. This latter hypothesis seems the most likely. The fate of these follicles has not been studied extensively, and for a long time they were considered as pathological. Studies conducted in pigs and dogs have shown that these polyovular follicles can grow, reach the preovulatory stage, and ovulate. However, all the oocytes in a single follicle are not equal. The examination of oocytes retrieved from a single follicle suggests that only one oocyte shows good morphological characteristics, whereas the others are at various stages of more or less advanced degeneration. The regulation of the number of polyovular follicles is still poorly understood and the data on the effects of age, gonadotropins, and steroids is contradictory. Their frequency can be increased by using treatments with estrogenic effects, or endocrine disruptors. In mice, the control is also genetic. The mechanisms leading to the formation of polyovular follicles remain to be explored, and the study of the functioning of these particular follicles would improve our understanding of the oocyte-follicle dialogue.Dans les ovaires des mammifĂšres, la trĂšs grande majoritĂ© des follicules ne contient qu'un seul ovocyte. Mais, dans la plupart des espĂšces, certains follicules contiennent plusieurs ovocytes: on parle alors de follicules polyovocytaires ou multiovocytaires. Leur frĂ©quence varie entre <0.1 % et 14% des follicules totaux et ils peuvent contenir de 2 Ă  17 ovocytes (et mĂȘme plus de 100 chez certains marsupiaux). Trois hypothĂšses pourraient expliquer leur formation: la division d'un ovocyte ayant initialement plusieurs noyaux, la fusion de plusieurs follicules diffĂ©rents ou la non-sĂ©paration de plusieurs ovocytes au moment de la formation des follicules primordiaux. Cette derniĂšre hypothĂšse semble la plus probable. La destinĂ©e de ces follicules a Ă©tĂ© encore peu explorĂ©e et ils ont Ă©tĂ© longtemps considĂ©rĂ©s comme pathologiques. Des travaux menĂ©s notamment chez le porc et le chien montrent que ces follicules polyovocytaires peuvent grandir, atteindre le stade prĂ©ovulatoire et ovuler. Cependant, tous les ovocytes d'un mĂȘme follicule ne sont pas Ă©quivalents. L'observation des ovocytes aprĂšs ponction du follicule suggĂšre qu'un seul ovocyte semble de bonne qualitĂ© morphologique, tandis que les autres sont Ă  des stades de dĂ©gĂ©nĂ©rescence plus ou moins avancĂ©s. La rĂ©gulation du nombre des follicules polyovocytaires est peu connue et il existe des donnĂ©es contradictoires sur les effets de l'Ăąge, des gonadotrophines et des stĂ©roĂŻdes. Leur frĂ©quence peut ĂȘtre augmentĂ©e par des traitements Ă  effets ƓstrogĂ©niques ou par l'action de perturbateurs endocriniens. Chez la souris, le contrĂŽle est Ă©galement gĂ©nĂ©tique. Les mĂ©canismes conduisant Ă  la formation des follicules polyovocytaires restent Ă  explorer et l'Ă©tude du fonctionnement de ces follicules pourrait contribuer Ă  une meilleure connaissance du dialogue ovocyte-follicule

    Characterization of oviduct epithelial spheroids for the study of embryo-maternal communication in cattle

    Get PDF
    Most in vitro models of oviduct epithelial cells (OEC) used thus far to gain insights into embryo-maternal communication induce cell dedifferentiation or are technically challenging. Moreover, although the presence of developing embryos has been shown to alter gene expression in OEC, the effect of embryos on OEC physiology remains largely unknown. Here, we propose a model based on bovine oviduct epithelial spheroids (OES) with specific shape and diameter (100-200 Όm) criteria. The aims of this study were to i) determine the appropriate culture conditions of bovine OES cultured in suspension by evaluating their morphology, total cell number, viability, and activity of ciliated cells; ii) monitor gene expression in OES at the time of their formation (day 0) and over the 10 days of culture; and iii) test whether the vicinity of developing embryos affects OES quality criteria. On day 10, the proportions of vesicle-shaped OES (V-OES) were higher in M199/500 (500 Όl of HEPES-buffered TCM-199) and synthetic oviduct fluid (SOF)/25 (25-ΌL droplet of SOF medium under mineral oil) than in M199/25 (25-ΌL droplet of M199 under mineral oil). The proportion of viable cells in V-OES was not affected by culture conditions and remained high (>80%) through day 10. The total number of cells per V-OES decreased over time except in SOF/25, while the proportions of ciliated cells increased over time in M199/500 but decreased in M199/25 and SOF/25. The movement amplitude of OES in suspension decreased over time under all culture conditions. Moreover, the gene expression of ANXA1, ESR1, HSPA8, and HSPA1A in OES remained stable during culture, while that of PGR and OVGP1 decreased from day 0 to day 10. Last, the co-culture of developing embryos with OES in SOF/25 increased the rates of blastocysts on days 7 and 8 compared to embryos cultured alone, and increased the proportion of V-OES compared to OES cultured alone. In conclusion, M199/500 and SOF/25 provided the optimal conditions for the long-time culture of OES. The supporting effect of OES on embryo development and of developing embryos on OES morphology was evidenced for the first time. Altogether, these results point OES as an easy-to-use, standardizable, and physiological model to study embryo-maternal interactions in cattle

    Canine oocyte maturation, fertilization and early embryonic development

    Get PDF
    Canine reproduction has several distinctive features. Firstly, folliculogenesis is unusual as numerous ovarian follicles contain several oocytes (polyovular follicles). Secondly, unlike in other mammalian species, oocytes at the time of ovulation are still at an immature stage (prophase I, germinal vesicle stage), and complete their maturation in the oviduct. This phenomenon is not easy to observe because the canine oocyte has a high lipid content and its DNA is difficult to visualise. Fertilization of immature oocytes has been observed in vitro, however in vivo, fertilization occurs in oocytes at the metaphase II stage, approximately 50 hours after ovulation. The 2-pronuclei stage is reached 72-124 hours after ovulation, and 2-cell embryos are present 96-168 hours after ovulation. The oviductal phase is long and embryos enter the uterine cavity at the morula or early blastocyst stage 10-12 days following ovulation. Implantation occurs 18 to 21 days after ovulation. In spite of all these specificities, studies on canine reproduction were so far mainly clinical. However, current research is focusing on fundamental knowledge, namely the mechanisms controlling oocyte maturation in vivo, in the hope to improve the yield of oocyte maturation in vitro, which is still very low.Plusieurs aspects de la reproduction sont particuliers Ă  l'espĂšce canine. D'une part, la folliculogenĂšse est singuliĂšre car chez la chienne, de nombreux follicules ovariens contiennent plusieurs ovocytes (follicules poly-ovocytaires). D'autre part, contrairement Ă  ce qui est observĂ© chez les autres femelles de mammifĂšres, au moment de l'ovulation, l'ovocyte est encore Ă  un stade immature (prophase I, stade vĂ©sicule germinative ou VG) et la maturation ovocytaire se poursuit ensuite dans l'oviducte. L'observation de ce phĂ©nomĂšne est rendue complexe par le fait que l'ovocyte canin est riche en lipides et que son ADN est donc difficile Ă  visualiser. In vitro, la fĂ©condation d'ovocytes immatures a Ă©tĂ© observĂ©e mais in vivo, elle a lieu au moment oĂč les ovocytes ont atteint le stade mĂ©taphase II, environ 50 h aprĂšs l'ovulation. Les premiers pronoyaux sont prĂ©sents 72 Ă  124 h aprĂšs l'ovulation et les premiers embryons au stade 2-cellules sont observĂ©s 96 Ă  168 h aprĂšs l'ovulation. La pĂ©riode de transit dans l'oviducte est longue et les embryons n'atteignent l'utĂ©rus qu'au stade morula ou jeune blastocyste, 10 Ă  12 jours aprĂšs l'ovulation et l'implantation a ensuite lieu vers 18 Ă  21 jours. Globalement, malgrĂ© toutes ces particularitĂ©s, les recherches sur la reproduction dans l'espĂšce canine Ă©taient jusqu'alors essentiellement cliniques. Les travaux visent maintenant Ă  amĂ©liorer les connaissances fondamentales, notamment concernant les mĂ©canismes contrĂŽlant la maturation ovocytaire in vivo, pour pouvoir ensuite amĂ©liorer les rendements de la maturation in vitro, actuellement trĂšs faibles

    Oviductal microenvironment: role in canine oocyte maturation in vivo and in vitro

    Get PDF
    In most mammals, oocytes are ovulated at the metaphase II stage, and the meiosis inhibition is then lifted by fertilization. In bitches and other Canidae species however, oocytes are released at the prophase I stage, and another 48 to 72h are necessary for themtomature into themetaphase II stage and become fertilizable. This specificity is currently hindering the development of reproductive biotechnologies in these species. In vitro maturation rates of canine oocytes are very low, as only 10 to 30%will reach the metaphase stage after 72h in culture. In bitches, nuclear maturation occurs in the oviduct, and tubal derivatives (culture media, such as Synthetic Oviductal Fluid, oviductal explants, coculture on tubal cell layers) were used to improve the yield, but so far not very successfully. This failure may be due to the lack of data on the composition of oviductal fluid in bitches. Further studies on the oviductal microenvironment of bitches are therefore necessary, as it is probably quite different from the oviductalmicroenvironment of other females, e.g. the presence of preovulatory luteinisation in bitches only. Creating a maturation medium based on the composition of oviductal fluid could be an interesting avenue to explore to improve in vitro maturation rates.Chez la plupart des mammifĂšres, les ovocytes sont bloquĂ©s en mĂ©taphase II au moment de l'ovulation et cette inhibition de la mĂ©iose est ensuite levĂ©e par la fĂ©condation. Chez les chiennes et les autres femelles de canidĂ©s, les ovocytes sont libĂ©rĂ©s au stade de prophase I, et il faut encore attendre 48 Ă  72 heures pour qu'ils atteignent le stade de mĂ©taphase II et deviennent fĂ©condables. Cette particularitĂ© constitue aujourd'hui un frein au dĂ©veloppement des biotechnologies de la reproduction chez les canidĂ©s. En effet, dans les essais de maturation in vitro d'ovocytes canins, seuls 10 Ă  30 % des ovocytes atteignent le stade de mĂ©taphase au bout de 72 heures de culture. Chez la chienne, la maturation nuclĂ©aire se produisant dans l'oviducte, des substituts de l'oviducte (milieux de culture comme le Synthetic Oviductal Fluid, explants d'oviductes, cultures sur tapis de cellules tubaires) ont Ă©tĂ© utilisĂ©s pour les cultures d'ovocytes in vitro, afin d'en amĂ©liorer le rendement, mais sans grand succĂšs jusqu'Ă  maintenant. Cet Ă©chec peut ĂȘtre dĂ» au manque de donnĂ©es sur la composition du liquide tubaire de la chienne. L'Ă©tude de ce microenvironnement prend donc tout son intĂ©rĂȘt, celui-ci Ă©tant probablement assez diffĂ©rent de celui des autres femelles, ne serait-ce que par l'existence du processus de lutĂ©inisation prĂ©ovulatoire dans cette espĂšce. À terme, la conception d'un milieu de maturation sur la base de la composition du liquide tubaire pourrait ĂȘtre une voie intĂ©ressante pour augmenter les taux de maturation in vitro

    Embryo biotechnologies in dogs

    Get PDF
    There is very little data available on the specificities of oocyte and embryo biology in bitches. The main difference with other mammals is the time of meiosis resumption: it does not occur before ovulation, but in the oviduct 48 to 60 hours later. The factors responsible for this delay are not known, which may explain why current in vitro maturation rates are so low (10 to 30%). Oocyte harvesting is also a major limiting factor, as there is no effective protocol for the induction of cycles and superovulation. In vitro fertilisation rates are equally low (10%), with a high rate of polyspermia. No puppy has yet been born from an embryo produced in vitro. As for embryos produced in vivo, their collection is difficult due to anatomical reasons and to the fact that superovulation cannot be induced. Embryo transfer to donor bitches is also hindered by difficulties to synchronise ovulations between donor and recipient bitches. Only 6 such trials have been reported in the literature, resulting in the birth of 45 puppies. In vitro cultures are very rarely used, and only four puppies were born from somatic cell cloning with only few hours of in vitro culture. Canine reproductive biotechnologies have thus largely fallen behind, due to a lack of fundamental research to improve our understanding of its specific physiological mechanisms. This deficit is all the more damaging that dogs are increasingly used as relevant biomedical models.La biologie de l'ovocyte et de l'embryon canins, qui prĂ©sentent des particularitĂ©s spĂ©cifiques, est trĂšs mal connue. La chienne se distingue principalement par les modalitĂ©s de reprise de la mĂ©iose ovocytaire : celle-ci n'a pas lieu au moment de l'ovulation, comme chez les autres femelles mammifĂšres, mais dans l'oviducte 48 Ă  60 heures aprĂšs l'ovulation. Les facteurs responsables de ce retard ne sont pas connus. Ceci explique sans doute pourquoi les taux de maturation in vitro obtenus Ă  l'heure actuelle sont faibles (10 Ă  30 %). La collecte des ovocytes est aussi un facteur limitant majeur, en l'absence de protocole efficace d'induction des cycles et de superovulation. Les rendements de fĂ©condation in vitro sont Ă©galement faibles (10 %), avec un taux Ă©levĂ© de polyspermie. À l'heure actuelle, aucun chiot n'est encore nĂ© Ă  partir d'un embryon produit in vitro. Quant aux embryons produits in vivo, leur collecte est difficile pour des raisons anatomiques et le rendement est limitĂ© par l'impossibilitĂ© d'induire des superovulations; par ailleurs, leur transfert chez des femelles receveuses se heurte aux difficultĂ©s de synchronisation des ovulations entre la femelle donneuse et les receveuses, et la littĂ©rature ne dĂ©crit que six essais, qui ont abouti Ă  la naissance de 45 chiots. Avec un trĂšs faible recours Ă  la culture in vitro, quatre naissances de chiots ont Ă©tĂ© obtenues par clonage de cellules somatiques. Les biotechnologies de la reproduction sont donc largement en retard dans l'espĂšce canine, qui souffre d'un manque de travaux fondamentaux visant Ă  mieux comprendre ses mĂ©canismes physiologiques spĂ©cifiques. Ce dĂ©ficit est d'autant plus dommageable que le chien prend une place croissante et pertinente en tant que modĂšle biomĂ©dical

    Development of a Multivariate Prediction Model for Early-Onset Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome in Lung Transplantation.

    Get PDF
    Chronic lung allograft dysfunction and its main phenotypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), are major causes of mortality after lung transplantation (LT). RAS and early-onset BOS, developing within 3 years after LT, are associated with particularly inferior clinical outcomes. Prediction models for early-onset BOS and RAS have not been previously described. LT recipients of the French and Swiss transplant cohorts were eligible for inclusion in the SysCLAD cohort if they were alive with at least 2 years of follow-up but less than 3 years, or if they died or were retransplanted at any time less than 3 years. These patients were assessed for early-onset BOS, RAS, or stable allograft function by an adjudication committee. Baseline characteristics, data on surgery, immunosuppression, and year-1 follow-up were collected. Prediction models for BOS and RAS were developed using multivariate logistic regression and multivariate multinomial analysis. Among patients fulfilling the eligibility criteria, we identified 149 stable, 51 BOS, and 30 RAS subjects. The best prediction model for early-onset BOS and RAS included the underlying diagnosis, induction treatment, immunosuppression, and year-1 class II donor-specific antibodies (DSAs). Within this model, class II DSAs were associated with BOS and RAS, whereas pre-LT diagnoses of interstitial lung disease and chronic obstructive pulmonary disease were associated with RAS. Although these findings need further validation, results indicate that specific baseline and year-1 parameters may serve as predictors of BOS or RAS by 3 years post-LT. Their identification may allow intervention or guide risk stratification, aiming for an individualized patient management approach
    • 

    corecore