7 research outputs found

    Representing Human Ethical Requirements in Hybrid Machine Learning Models:Technical Opportunities and Fundamental Challenges

    Get PDF
    Hybrid machine learning encompasses predefinition of rules and ongoing learning from data. Human organizations can implement hybrid machine learning (HML) to automate some of their operations. Human organizations need to ensure that their HML implementations are aligned with human ethical requirements as defined in laws, regulations, standards, etc. The purpose of the study reported here was to investigate technical opportunities for representing human ethical requirements in HML. The study sought to represent two types of human ethical requirements in HML: locally simple and locally complex. The locally simple case is road traffic regulations. This can be considered to be a relatively simple case because human ethical requirements for road safety, such as stopping at red traffic lights, are defined clearly and have limited scope for personal interpretation. The locally complex case is diagnosis procedures for functional disorders, which can include medically unexplained symptoms. This case can be considered to be locally complex because human ethical requirements for functional disorder healthcare are less well defined and are more subject to personal interpretation. Representations were made in a type of HML called Algebraic Machine Learning. Our findings indicate that there are technical opportunities to represent human ethical requirements in HML because of its combination of human-defined top down rules and bottom up data-driven learning. However, our findings also indicate that there are limitations to representing human ethical requirements: irrespective of what type of machine learning is used. These limitations arise from fundamental challenges in defining complex ethical requirements, and from potential for opposing interpretations of their implementation. Furthermore, locally simple ethical requirements can contribute to wider ethical complexity

    TASKED: Transformer-based Adversarial learning for human activity recognition using wearable sensors via Self-KnowledgE Distillation

    Full text link
    Wearable sensor-based human activity recognition (HAR) has emerged as a principal research area and is utilized in a variety of applications. Recently, deep learning-based methods have achieved significant improvement in the HAR field with the development of human-computer interaction applications. However, they are limited to operating in a local neighborhood in the process of a standard convolution neural network, and correlations between different sensors on body positions are ignored. In addition, they still face significant challenging problems with performance degradation due to large gaps in the distribution of training and test data, and behavioral differences between subjects. In this work, we propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED), that accounts for individual sensor orientations and spatial and temporal features. The proposed method is capable of learning cross-domain embedding feature representations from multiple subjects datasets using adversarial learning and the maximum mean discrepancy (MMD) regularization to align the data distribution over multiple domains. In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition. Experimental results show that TASKED not only outperforms state-of-the-art methods on the four real-world public HAR datasets (alone or combined) but also improves the subject generalization effectively.Comment: 17 pages, 5 figures, Submitted to Knowledge-Based Systems, Elsevier. arXiv admin note: substantial text overlap with arXiv:2110.1216

    Learning from the Best: Contrastive Representations Learning Across Sensor Locations for Wearable Activity Recognition

    Full text link
    We address the well-known wearable activity recognition problem of having to work with sensors that are non-optimal in terms of information they provide but have to be used due to wearability/usability concerns (e.g. the need to work with wrist-worn IMUs because they are embedded in most smart watches). To mitigate this problem we propose a method that facilitates the use of information from sensors that are only present during the training process and are unavailable during the later use of the system. The method transfers information from the source sensors to the latent representation of the target sensor data through contrastive loss that is combined with the classification loss during joint training. We evaluate the method on the well-known PAMAP2 and Opportunity benchmarks for different combinations of source and target sensors showing average (over all activities) F1 score improvements of between 5% and 13% with the improvement on individual activities, particularly well suited to benefit from the additional information going up to between 20% and 40%.Comment: Presented at Ubicomp/ISWC 202

    Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition

    Full text link
    Recognizing human activities from sensor data is a vital task in various domains, but obtaining diverse and labeled sensor data remains challenging and costly. In this paper, we propose an unsupervised statistical feature-guided diffusion model for sensor-based human activity recognition. The proposed method aims to generate synthetic time-series sensor data without relying on labeled data, addressing the scarcity and annotation difficulties associated with real-world sensor data. By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data. We conducted experiments on public human activity recognition datasets and compared the proposed method to conventional oversampling methods and state-of-the-art generative adversarial network methods. The experimental results demonstrate that the proposed method can improve the performance of human activity recognition and outperform existing techniques

    Translating Videos into Synthetic Training Data for Wearable Sensor-Based Activity Recognition Systems Using Residual Deep Convolutional Networks

    No full text
    Human activity recognition (HAR) using wearable sensors has benefited much less from recent advances in Deep Learning than fields such as computer vision and natural language processing. This is, to a large extent, due to the lack of large scale (as compared to computer vision) repositories of labeled training data for sensor-based HAR tasks. Thus, for example, ImageNet has images for around 100,000 categories (based on WordNet) with on average 1000 images per category (therefore up to 100,000,000 samples). The Kinetics-700 video activity data set has 650,000 video clips covering 700 different human activities (in total over 1800 h). By contrast, the total length of all sensor-based HAR data sets in the popular UCI machine learning repository is less than 63 h, with around 38 of those consisting of simple mode of locomotion activities like walking, standing or cycling. In our research we aim to facilitate the use of online videos, which exist in ample quantities for most activities and are much easier to label than sensor data, to simulate labeled wearable motion sensor data. In previous work we already demonstrated some preliminary results in this direction, focusing on very simple, activity specific simulation models and a single sensor modality (acceleration norm). In this paper, we show how we can train a regression model on generic motions for both accelerometer and gyro signals and then apply it to videos of the target activities to generate synthetic Inertial Measurement Units (IMU) data (acceleration and gyro norms) that can be used to train and/or improve HAR models. We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data. Furthermore, we show that by either including a small amount of real sensor data for model calibration or simply leveraging the fact that (in general) we can easily generate much more simulated data from video than we can collect its real version, the advantage of the latter can eventually be equalized
    corecore