910 research outputs found
Geographical Python Teaching Resources: GeoPyTeR
GeoPyTeR, an acronym of Geographical Python Teaching Resources, provides a hub for the distribution of ‘best practice’ in computational and spatial analytic instruction, enabling instructors to quickly and flexibly remix contributed content to suit their needs and delivery framework and encouraging contributors from around the world to ‘give back’ whether in terms of how to teach individual concepts or deliver whole courses. As such, GeoPyTeR is positioned at the confluence of two powerful streams of thought in software and education: the free and open-source software movement in which contributors help to build better software, usually on an unpaid basis, in return for having access to better tools and the recognition of their peers); and the rise of Massive Open Online Courses, which seek to radically expand access to education by moving course content online and providing access to students anywhere in the world at little or no cost. This paper sets out in greater detail the origins and inspiration for GeoPyTeR, the design of the system and, through examples, the types of innovative workflows that it enables for teachers. We believe that tools like GeoPyTeR, which build on open teaching practices and promote the development of a shared understanding of what it is to be a computational geographer represent an opportunity to expand the impact of this second wave of innovation in instruction while reducing the demands placed on those actively teaching in this area
Introduction to the AdS/CFT correspondence
This is a pedagogical introduction to the AdS/CFT correspondence, based on
lectures delivered by the author at the third IDPASC school. Starting with the
conceptual basis of the holographic dualities, the subject is developed
emphasizing some concrete topics, which are discussed in detail. A very brief
introduction to string theory is provided, containing the minimal ingredients
to understand the origin of the AdS/CFT duality. Other topics covered are the
holographic calculation of correlation functions, quark-antiquark potentials
and transport coefficients.Comment: 64 pages, 12 figures;v2: minor improvements;v3: references adde
Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories
Using localization, matrix model and saddle-point techniques, we determine
exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge
theories. Focusing at planar and large `t Hooft couling limits, we compare its
asymptotic behavior with well-known exponential growth of Wilson loop in N=4
super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N
fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential
growth -- at most, it can grow a power of `t Hooft coupling. For theory with
gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two
Wilson loops associated with two gauge groups. We find Wilson loop in untwisted
sector grows exponentially large as in N=4 super Yang-Mills theory. We then
find Wilson loop in twisted sector exhibits non-analytic behavior with respect
to difference of two `t Hooft coupling constants. By letting one gauge coupling
constant hierarchically larger/smaller than the other, we show that Wilson
loops in the second type theory interpolate to Wilson loop in the first type
theory. We infer implications of these findings from holographic dual
description in terms of minimal surface of dual string worldsheet. We suggest
intuitive interpretation that in both type theories holographic dual background
must involve string scale geometry even at planar and large `t Hooft coupling
limit and that new results found in the gauge theory side are attributable to
worldsheet instantons and infinite resummation therein. Our interpretation also
indicate that holographic dual of these gauge theories is provided by certain
non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic
changes, v4. published versio
La bibliografía de las bibliografías jesuíticas en los ámbitos hispánicos (1773-1990).
La historiografía es una ciencia del Renacimiento y consiste en detectar la bibliografía de las bibliografías desarrolladas por una institución dedicada a las letras, las ciencias y las artes. El presente estudio se centra en la visión jesuítica de la bibliografía de las bibliografías desarrollas en el mundo hispánico desde 1773 hasta 1999 ya que se convierte en la carta de navegar para poder interpretar ese complicado mundo
Composite Fermion Metals from Dyon Black Holes and S-Duality
We propose that string theory in the background of dyon black holes in
four-dimensional anti-de Sitter spacetime is holographic dual to conformally
invariant composite Dirac fermion metal. By utilizing S-duality map, we show
that thermodynamic and transport properties of the black hole match with those
of composite fermion metal, exhibiting Fermi liquid-like. Built upon
Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on
magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of
SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to
constituent fermions. Being at metallic point, the statistical magnetic flux is
interlocked to the background magnetic field. We find supporting evidences for
proposed holographic duality from study of internal energy of black hole and
probe bulk fermion motion in black hole background. They show good agreement
with ground-state energy of composite fermion metal in Thomas-Fermi
approximation and cyclotron motion of a constituent or composite fermion
excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised
version to be published in JHE
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Four-Dimensional String/String Duality
We present supersymmetric soliton solutions of the four-dimensional heterotic
string corresponding to monopoles, strings and domain walls. These solutions
admit the interpretation of a fivebrane wrapped around , or
of the toroidally compactified dimensions and are arguably exact to all
orders in . The solitonic string solution exhibits an {\it
strong/weak coupling} duality which however corresponds to an {\it
target space} duality of the fundamental string.Comment: 14 page
N = 2 supersymmetric sigma-models and duality
For two families of four-dimensional off-shell N = 2 supersymmetric nonlinear
sigma-models constructed originally in projective superspace, we develop their
formulation in terms of N = 1 chiral superfields. Specifically, these theories
are: (i) sigma-models on cotangent bundles T*M of arbitrary real analytic
Kaehler manifolds M; (ii) general superconformal sigma-models described by
weight-one polar supermultiplets. Using superspace techniques, we obtain a
universal expression for the holomorphic symplectic two-form \omega^{(2,0)}
which determines the second supersymmetry transformation and is associated with
the two complex structures of the hyperkaehler space T*M that are complimentary
to the one induced from M. This two-form is shown to coincide with the
canonical holomorphic symplectic structure. In the case (ii), we demonstrate
that \omega^{(2,0)} and the homothetic conformal Killing vector determine the
explicit form of the superconformal transformations. At the heart of our
construction is the duality (generalized Legendre transform) between off-shell
N = 2 supersymmetric nonlinear sigma-models and their on-shell N = 1 chiral
realizations. We finally present the most general N = 2 superconformal
nonlinear sigma-model formulated in terms of N = 1 chiral superfields. The
approach developed can naturally be generalized in order to describe 5D and 6D
superconformal nonlinear sigma-models in 4D N = 1 superspace.Comment: 31 pages, no figures; V2: reference and comments added, typos
corrected; V3: more typos corrected, published versio
Extended supersymmetric sigma models in AdS_4 from projective superspace
There exist two superspace approaches to describe N=2 supersymmetric
nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in
terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and
arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS
projective-superspace techniques developed in arXiv:0807.3368. The virtue of
the approach (i) is that it makes manifest the geometric properties of the N=2
supersymmetric sigma-models in AdS_4. The target space must be a non-compact
hyperkahler manifold endowed with a Killing vector field which generates an
SO(2) group of rotations on the two-sphere of complex structures. The power of
the approach (ii) is that it allows us, in principle, to generate hyperkahler
metrics as well as to address the problem of deformations of such metrics.
Here we show how to relate the formulation (ii) to (i) by integrating out an
infinite number of N=1 AdS auxiliary superfields and performing a superfield
duality transformation. We also develop a novel description of the most general
N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral
superfields on three-dimensional N=2 flat superspace without central charge.
This superspace naturally originates from a conformally flat realization for
the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates
for AdS_4. This novel formulation allows us to uncover several interesting
geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE
Six-dimensional Supergravity and Projective Superfields
We propose a superspace formulation of N=(1,0) conformal supergravity in six
dimensions. The corresponding superspace constraints are invariant under
super-Weyl transformations generated by a real scalar parameter. The known
variant Weyl super-multiplet is recovered by coupling the geometry to a
super-3-form tensor multiplet. Isotwistor variables are introduced and used to
define projective superfields. We formulate a locally supersymmetric and
super-Weyl invariant action principle in projective superspace. Some families
of dynamical supergravity-matter systems are presented.Comment: 39 pages; v3: some modifications in section 2; equations (2.3),
(2.14b), (2.16) and (2.17) correcte
- …