5 research outputs found

    Flexible organic photovoltaics with star‐shaped non‐fullerene acceptors end‐capped with indene malononitrile and barbiturate derivatives

    Get PDF
    We report the design and synthesis of three star-shaped non-fullerene (NFA) acceptors, TPA-2T-INCN, TPA-2T-BAB, and TPA-T-INCN, based on triphenylamine (TPA) core and linked through π-conjugated thiophene (T) spacers to different terminal units (3-oxo-2,3-dihydro-1H-inden-1-ylidene) malononitrile, INCN, and 1,3-dimethylbarbituric acid, BAB). These materials were blended with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor polymer and tested in flexible organic photovoltaics (OPVs). The NFAs capped with the strong electron withdrawing INCN unit performed best in OPVs. Both P3HT:TPA-T-INCN, and P3HT:TPA-2T-INCN blends also showed the highest photoluminescence quenching efficiency (95.8% and 92.6%, respectively). Surprisingly, when reducing the number of T spacers from 2 to 1, the solubility of the NFAs in o-dichlorobenzene increased, leading to easier processing during the OPV fabrication and better surface morphology. This explains the best performance of TPA-T-INCN-based blends in OPVs, with a champion power conversion efficiency of 1.13%.publishedVersionPeer reviewe

    Design, syntes och utvÀrdering av fenotiazin-innehÄllande smÄ molekyler till effektiva organiska solceller

    No full text
    Photovoltaics offers one of the most promising routes to generate electricity in a clean way. As an emerging technology in photovoltaics, organic solar cells (OSC) have attracted a great deal of attention owing to their potential low-cost, lightweight, flexibility and solution processability. Although power conversion efficiencies above 12% have been achieved at this date, there is a great interest for new ideal materials to further improve the PCEs and address device durability, which are major concerns for the commercialization of this technology. The main objective of this thesis is to design and synthesize phenothiazine-based conjugate small molecules and explore their use as electron donor components in OSCs. Phenothiazine is a non-planar moiety with unusual “butterfly” type of geometry, which is known to reduce molecular aggregation and intermolecular excimer formation. In the first study of this thesis, a small molecule based on a cyano-arylenevinylene building block with deep HOMO level was prepared. Although a high open-circuit voltage of 1.0 V was achieved, the tendency of the small molecule to crystallize in the active layer at a higher temperature and with time hindered the attainment of an optimal phase morphology required for the achievement of a higher efficiency. In the second and third studies, phenothiazine was used as a π-system bridge and as a core unit to construct small molecules based on symmetric and asymmetric frameworks with varying terminal electron-withdrawing groups. The electron-withdrawing property of the terminal units was found to have a significant influence on the optical absorption properties, electronic energy levels, molecular ordering, charge carrier mobility and morphology of the resulting active layers. In the fourth study, side-chain modification of the phenothiazine unit of symmetrically configured small molecules with an oxygen-containing (methoxyethoxy ethyl) side chain resulted in the enhancement of the dielectric constant. Although absorption properties were unchanged in solution, a dense π-π stacking was observed in the solid state. In summary, it is demonstrated that phenothiazine is a promising candidate and worth exploring donor material for OSCs. Its versatility as a π-linker and as a central core unit in symmetric and asymmetric configurations has been explored. The use of nonplanar building blocks such as phenothiazine for the construction of donor materials is an interesting strategy for controlling molecular aggregation and difficult solution processability of small molecules if it is combined with a judiciously designed conjugate backbone

    Structure-induced optoelectronic properties of phenothiazine-based materials

    Get PDF
    Phenothiazine (PTZ)-based materials have recently received considerable interest owing to their intriguing optoelectronic properties, low-cost, versatility of functionalization, and commercial availability. The advent of molecular engineering concepts in π-conjugated organic materials, such as the “donor-acceptor” approach, propelled the synthesis of a large number of PTZ-derivatives with tailored properties like low bandgap, tunable energy levels, and reversible redox properties. This resulted in the promising application of PTZs as electron donors or acceptors in organic solar cells or as hole-transporting materials in organic light-emitting diodes and perovskite solar cells. In this review, we discuss the recent and most appealing design strategies of PTZ-based materials for optoelectronics, with emphasis on the impact of the structural modifications on the fundamental physicochemical properties (absorption, emission, frontier energy levels, charge carrier mobility). We also highlight the key achievements in the development of solar cells, light-emitting diodes, and batteries employing PTZ core semiconductors. Our final goal is to underpin the reasons that still limit the performance of PTZ-based optoelectronics and to outline future research directions for the next-generation PTZ materials with ever enhanced properties.publishedVersionPeer reviewe
    corecore