9 research outputs found
Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned From the IPIN 2018 Competition
The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75 th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition
The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
The IPIN 2019 Indoor Localisation Competition—Description and Results
IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks
Star-Tracker Algorithm for Smartphones and Commercial Micro-Drones
This paper presents a star-tracking algorithm to determine the accurate global orientation of autonomous platforms such as nano satellites, U A V s, and micro-drones using commercial-off-the-shelf ( C O T S ) mobile devices such as smartphones. Such star-tracking is especially challenging because it is based on existing cameras which capture a partial view of the sky and should work continuously and autonomously. The novelty of the proposed framework lies both in the computational efficiency and the ability of the star-tracker algorithm to cope with noisy measurements and outliers using affordable C O T S mobile platforms. The presented algorithm was implemented and tested on several popular platforms including: Android mobile devices, commercial-micro drones, and Raspberry Pi. The expected accuracy of the reported orientation is [0.1°,0.5°]
Urban Free-Space Optical Network Optimization
This paper presents a set of graph optimization problems related to free-space optical communication networks. Such laser-based wireless networks require a line of sight to enable communication, thus a visibility graph model is used herein. The main objective is to provide connectivity from a communication source point to terminal points through the use of some subset of available intermediate points. To this end, we define a handful of problems that differ mainly in the costs applied to the nodes and/or edges of the graph. These problems should be optimized with respect to cost and performance. The problems at hand are shown to be NP-hard. A generic heuristic based on a genetic algorithm is proposed, followed by a set of simulation experiments that demonstrate the performance of the suggested heuristic method on real-life scenarios. The suggested genetic algorithm is compared with the Euclidean Steiner tree method. Our simulations show that in many settings, especially in dense graphs, the genetic algorithm finds lower-cost solutions than its competitor, while it falls behind in some settings. However, the run-time performance of the genetic algorithm is considerably better in graphs with 1000 nodes or more, being more than twice faster in some settings. We conclude that the suggested heuristic improves run-time performance on large-scale graphs and can handle a wider range of related optimization problems. The simulation results suggest that the 5G urban backbone may benefit significantly from using free-space optical networks
Pico-Sat to Ground Control: Optimizing Download Link via Laser Communication
Consider a constellation of over a hundred low Earth orbit satellites that aim to capture every point on Earth at least once a day. Clearly, there is a need to download from each satellite a large set of high-quality images on a daily basis. In this paper, we present a laser communication (lasercom) framework that stands as an alternative solution to existing radio-frequency means of satellite communication. By using lasercom, the suggested solution requires no frequency licensing and therefore allows such satellites to communicate with any optical ground station on Earth. Naturally, in order to allow laser communication from a low Earth orbit satellite to a ground station, accurate aiming and tracking are required. This paper presents a free-space optical communication system designed for a set of ground stations and nano-satellites. A related scheduling model is presented, for optimizing the communication between a ground station and a set of lasercom satellites. Finally, we report on SATLLA-2B, the first 300 g pico-satellite with basic free-space optics capabilities, that was launched on January 2022. We conjecture that the true potential of the presented network can be obtained by using a swarm of few hundreds of such lasercom pico-satellites, which can serve as a global communication infrastructure using existing telescope-based observatories as ground stations
Dynamic Network Formation for FSO Satellite Communication
Satellite network optimization is essential, particularly since the cost of manufacturing, launching and maintaining each satellite is significant. Moreover, classical communication optimization methods, such as Minimal Spanning Tree, cannot be applied directly in dynamic scenarios where the satellite constellation is constantly changing. Motivated by the rapid growth of the Star-Link constellation that, as of Q4 2021, consists of over 1600 operational LEO satellites with thousands more expected in the coming years, this paper focuses on the problem of constructing an optimal inter-satellite (laser) communication network. More formally, given a large set of LEO satellites, each equipped with a fixed number of laser links, we direct each laser module on each satellite such that the underlying laser network will be optimal with respect to a given objective function and communication demand. In this work, we present a novel heuristic to create an optimal dynamic optical network communication using an Ant Colony algorithm. This method takes into account both the time it takes to establish an optical link (acquisition time) and the bounded number of communication links, as each satellite has a fixed amount of optical communication modules installed. Based on a large number of simulations, we conclude that, although the underlying problem of bounded-degree-spanning-tree is NP-hard (even for static cases), the suggested ant-colony heuristic is able to compute cost-efficient solutions in semi-real-time
Dynamic Network Formation for FSO Satellite Communication
Satellite network optimization is essential, particularly since the cost of manufacturing, launching and maintaining each satellite is significant. Moreover, classical communication optimization methods, such as Minimal Spanning Tree, cannot be applied directly in dynamic scenarios where the satellite constellation is constantly changing. Motivated by the rapid growth of the Star-Link constellation that, as of Q4 2021, consists of over 1600 operational LEO satellites with thousands more expected in the coming years, this paper focuses on the problem of constructing an optimal inter-satellite (laser) communication network. More formally, given a large set of LEO satellites, each equipped with a fixed number of laser links, we direct each laser module on each satellite such that the underlying laser network will be optimal with respect to a given objective function and communication demand. In this work, we present a novel heuristic to create an optimal dynamic optical network communication using an Ant Colony algorithm. This method takes into account both the time it takes to establish an optical link (acquisition time) and the bounded number of communication links, as each satellite has a fixed amount of optical communication modules installed. Based on a large number of simulations, we conclude that, although the underlying problem of bounded-degree-spanning-tree is NP-hard (even for static cases), the suggested ant-colony heuristic is able to compute cost-efficient solutions in semi-real-time
Crossing language identification: Multilingual ASR framework based on semantic dataset creation & Wav2Vec 2.0
This study proposes an innovative methodology to enhance the performance of multilingual Automatic Speech Recognition (ASR) systems by capitalizing on the high semantic similarity between sentences across different languages and eliminating the requirement for Language Identification (LID). To achieve this, special bilingual datasets were created from the Mozzila Common Voices datasets in Spanish, Russian, and Portuguese. The process involves computing sentence embeddings using Language-agnostic BERT and selecting sentence pairs based on high and low cosine similarity. Subsequently, we train the Wav2vec 2.0 XLSR53 model on these datasets and assess its performance utilizing Character Error Rate (CER) and Word Error Rate (WER) metrics. The experimental results indicate that models trained on high-similarity samples consistently surpass their low-similarity counterparts, emphasizing the significance of high semantic similarity data selection for precise and dependable ASR performance. Furthermore, the elimination of LID contributes to a simplified system with reduced computational costs and the capacity for real-time text output. The findings of this research offer valuable insights for the development of more efficient and accurate multilingual ASR systems, particularly in real-time and on-device applications