129,189 research outputs found

    Reply to Comment on "Circular Motion of Asymmetric Self-Propelling Particles"

    Get PDF
    In a Comment [Phys. Rev. Lett. 113, 029801 (2014)] on our Letter on self-propelled asymmetric particles [Phys. Rev. Lett. 110, 198302 (2013); arXiv:1302.5787], Felderhof claims that our theory based on Langevin equations would be conceptually wrong. In this Reply we show that our theory is appropriate, consistent, and physically justified.Comment: 2 page

    UD\u27s Father Roesch Accepts Temporary Post in Hawaii

    Get PDF
    News release announces the Rev. Raymond A. Roesch, S.M., has accepted the position of acting president of Chaminade University in Hawaii

    Mahayana Practices for Healing, Reconciliation and Peace: Perfect Peace Makes Practice

    Get PDF

    Identifying Interaction Sites in "Recalcitrant" Proteins: Predicted Protein and Rna Binding Sites in Rev Proteins of Hiv-1 and Eiav Agree with Experimental Data

    Get PDF
    Protein-protein and protein nucleic acid interactions are vitally important for a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed machine learning approaches for predicting which amino acids of a protein participate in its interactions with other proteins and/or nucleic acids, using only the protein sequence as input. In this paper, we describe an application of classifiers trained on datasets of well-characterized protein-protein and protein-RNA complexes for which experimental structures are available. We apply these classifiers to the problem of predicting protein and RNA binding sites in the sequence of a clinically important protein for which the structure is not known: the regulatory protein Rev, essential for the replication of HIV-1 and other lentiviruses. We compare our predictions with published biochemical, genetic and partial structural information for HIV-1 and EIAV Rev and with our own published experimental mapping of RNA binding sites in EIAV Rev. The predicted and experimentally determined binding sites are in very good agreement. The ability to predict reliably the residues of a protein that directly contribute to specific binding events - without the requirement for structural information regarding either the protein or complexes in which it participates - can potentially generate new disease intervention strategies.Comment: Pacific Symposium on Biocomputing, Hawaii, In press, Accepted, 200

    Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev

    Get PDF
    Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for e+ee^+e^- annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of RR, σ(e+ehadrons)/σ(e+eμ+μ)\sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-), are determined.Comment: Submitted to Phys. Rev. Let

    Interview with Wallace Fukunaga

    Get PDF
    The Rev. Wallace Fukunaga served as the campus minister of the United Church of Christ, overseeing the ministry of the Off Center Coffeehouse from 1965 to 1972. The Off Center Coffee House became a major center for debates and meetings of groups, including gatherings by Kokua Hawaii members

    Linear electric field frequency shift (important for next generation electric dipole moment searches) induced in confined gases by a magnetic field gradient

    Get PDF
    The search for particle electric dipole moments (edm) represents a most promising way to search for physics beyond the standard model. A number of groups are planning a new generation of experiments using stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the systematic error resulting from the interaction of the well-known v×E\overrightarrow{v}\times \overrightarrow{E} field with magnetic field gradients (often referred to as the geometric phase effect (Commins, ED; Am. J. Phys. \QTR{bf}{59}, 1077 (1991), Pendlebury, JM \QTR{em}{et al;} Phys. Rev. \QTR{bf}{A70}, 032102 (2004)). This interaction produces a frequency shift linear in the electric field, mimicking an edm. In this work we introduce an analytic form for the velocity auto-correlation function which determines the velocity-position correlation function which in turn determines the behavior of the frequency shift (Lamoreaux, SK and Golub, R; Phys. Rev \QTR{bf}{A71}, 032104 (2005)) and show how it depends on the operating conditions of the experiment. We also discuss some additional issues.Comment: 21 pages, 5 figure
    corecore