66 research outputs found

    Reduction of Soil-Borne Plant Pathogens Using Lime and Ammonia Evolved from Broiler Litter

    Get PDF
    In laboratory and micro-plots simulations and in a commercial greenhouse, soil ammonia (NH3) and pH were manipulated as means to control soil-borne fungal pathogens and nematodes. Soil ammonification capacity was increased by applying low C/N ratio broiler litter at 1–8% (w/w). Soil pH was increased using lime at 0.5–1% (w/w). This reduced fungi (Fusarium oxysporum f. sp. dianthi and Sclerotium rolfsii) and root-knot nematode (Meloidogyne javanica) in lab tests below detection. In a commercial greenhouse, broiler litter (25 Mg ha−1) and lime (12.5 Mg ha−1) addition to soil in combination with solarization significantly reduced M. javanica induced root galling of tomato test plants from 47% in the control plots (solarization only) to 7% in treated plots. Root galling index of pepper plants, measured 178 days after planting in the treated and control plots, were 0.8 and 1.5, respectively, which was statistically significantly different. However, the numbers of nematode juveniles in the root zone soil counted 83 and 127 days after pepper planting were not significantly different between treatments. Pepper fruit yield was not different between treatments. Soil disinfection and curing was completed within one month, and by the time of bell-pepper planting the pH and ammonia values were normal

    Probing axion-like particles at the Electron-Ion Collider

    Full text link
    The Electron-Ion Collider~(EIC), a forthcoming powerful high-luminosity facility, represents an exciting opportunity to explore new physics. In this article, we study the potential of the EIC to probe the coupling between axion-like particles~(ALPs) and photons in coherent scattering. The ALPs can be produced via photon fusion and decay back to two photons inside the EIC detector. In a prompt-decay search, we find that the EIC can set the most stringent bound for m_a \lesssim 20\,\GeV and probe the effective scales Λâ‰Č105 \Lambda \lesssim 10^{5}\,GeV. In a displaced-vertex search, which requires adopting an EM calorimeter technology that provides directionality, the EIC could probe ALPs with m_a \lesssim 1\,\GeV at effective scales \Lambda \lesssim 10^{7}\,\GeV. Combining the two search strategies, the EIC can probe a significant portion of unexplored parameter space in the 0.2 < m_a <20\,\GeV mass range.Comment: 23 pages, 9 figure

    Safety and efficacy of an intra-oral electrostimulator for the relief of dry mouth in patients with chronic graft versus host disease: case Series

    Get PDF
    Objectives: Patients with chronic graft-versus-host disease (cGVHD) often suffer from dry mouth and oral mu - cosal lesions. The primary objective of this study was to investigate the safety of an intra-oral electrostimulator (GenNarino) in symptomatic cGVHD patients. The secondary objective was to study the impact on the salivary gland involvement of cGVHD patients. Study Design: This paper presents a case series. The study included patients treated for 4 weeks, randomly as - signed to the active device and then crossed-over to a sham-device or vice versa. The patients and clinicians were blind to the treatment delivered. Data regarding oral mucosal and salivary gland involvement were collected. Results: Six patients were included in this series. Most of the intraoral areas with manifestations of cGVHD were not in contact with the GenNarino device. Two patients developed mild mucosal lesions in areas in contact with the GenNarino during the study. However, only one of them had a change in the National Institutes of Health (NIH) score for oral cGVHD. The unstimulated and stimulated salivary flow rate increased in 4 out of the 5 pa - tients included in this analysis. Symptoms of dry mouth and general oral comfort improved. Conclusion: This study suggests that GenNarino is safe in cGVHD patients with respect to oral tissues. Furthermore the use of GenNarino resulted in subjective and objective improvements in dry mouth symptoms. A large scale study is needed to confirm the impact and safety of GenNarino on systemic cGVHD

    Mesenchymal Stromal Cell-Derived Exosomes Affect mRNA Expression and Function of B-Lymphocytes

    Get PDF
    Background: Bone marrow mesenchymal stem cells (bmMSC) may play a role in the regulation of maturation, proliferation, and functional activation of lymphocytes, though the exact mechanisms are unknown. MSC-derived exosomes induce a regulatory response in the function of B, T, and monocyte-derived dendritic cells. Here, we evaluated the specific inhibition of human lymphocytes by bmMSC-derived exosomes and the effects on B-cell function.Methods: Exosomes were isolated from culture media of bmMSC obtained from several healthy donors. The effect of purified bmMSC-derived exosomes on activated peripheral blood mononuclear cells (PBMCs) and isolated B and T lymphocyte proliferation was measured by carboxyfluorescein succinimidyl ester assay. Using the Illumina sequencing platform, mRNA profiling was performed on B-lymphocytes activated in the presence or absence of exosomes. IngenuityÂź pathway analysis software was applied to analyze pathway networks, and biological functions of the differentially expressed genes. Validation by RT-PCR was performed. The effect of bmMSC-derived exosomes on antibody secretion was measured by ELISA.Results: Proliferation of activated PBMCs or isolated T and B cells co-cultured with MSC-derived exosomes decreased by 37, 23, and 18%, respectively, compared to controls. mRNA profiling of activated B-lymphocytes revealed 186 genes that were differentially expressed between exosome-treated and control cells. We observed down- and up-regulation of genes that are involved in cell trafficking, development, hemostasis, and immune cell function. RNA-Seq results were validated by real time PCR analysis for the expression of CXCL8 (IL8) and MZB1 genes that are known to have an important role in immune modulation. Functional alterations were confirmed by decreased IgM production levels. Consistent results were demonstrated among a wide variety of healthy human bmMSC donors.Conclusion: Our data show that exosomes may play an important role in immune regulation. They inhibit proliferation of several types of immune cells. In B-lymphocytes they modulate cell function by exerting differential expression of the mRNA of relevant genes. The results of this study help elucidate the mechanisms by which exosomes induce immune regulation and may contribute to the development of newer and safer therapeutic strategies

    Neuroblastoma Cell Death is Induced by Inorganic Arsenic Trioxide (As2O3) and Inhibited by a Normal Human Bone Marrow Cell-Derived Factor

    Get PDF
    Three phenotypically distinct cell types are present in human neuroblastomas (NB) and NB cell lines: I-type stem cells, N-type neuroblastic precursors, and S-type Schwannian/melanoblastic precursors. The stimulation of human N-type neuroblastoma cell proliferation by normal human bone marrow monocytic cell conditioned medium (BMCM) has been demonstrated in vitro, a finding consistent with the high frequency of bone marrow (BM) metastases in patients with advanced NB. Inorganic arsenic trioxide (As2O3), already clinically approved for the treatment of several hematological malignancies, is currently under investigation for NB. Recent studies show that As2O3 induces apoptosis in NB cells. We examined the impact of BMCM on growth and survival of As2O3-treated NB cell lines, to evaluate the response of cultured NB cell variants to regulatory agents. We studied the effect of BMCM on survival and clonogenic growth of eleven As2O3-treated NB cell lines grown in sparsely seeded, non-adherent, semi-solid cultures. As2O3 had a strong inhibitory effect on survival of all tested NB cell lines. BMCM augmented cell growth and survival and reversed the inhibitory action of As2O3 in all tested cell lines, but most strongly in N-type cells. While As2O3 effectively reduced survival of all tested NB cell lines, BMCM effectively impacted its inhibitory action. Better understanding of micro-environmental regulators affecting human NB tumor cell growth and survival may be seminal to the development of therapeutic strategies and clinically effective agents for this condition

    Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak

    No full text
    We present the rationale for a novel allo-priming approach to serve the elderly as a universal anti-virus vaccine, as well serving to remodel the aging immune system in order to reverse immunosenescence and inflammaging. This approach has the potential to protect the most vulnerable from disease and provide society an incalculable economic benefit. Allo-priming healthy elderly adults is proposed to provide universal protection from progression of any type of viral infection, including protection against progression of the current outbreak of COVID-19 infection, and any future variants of the causative SARS-CoV-2 virus or the next ‘Disease X’. Allo-priming is an alternative approach for the COVID-19 pandemic that provides a back-up in case vaccination strategies to elicit neutralizing antibody protection fails or fails to protect the vulnerable elderly population. The allo-priming is performed using activated, intentionally mismatched, ex vivo differentiated and expanded living Th1-like cells (AlloStimÂź) derived from healthy donors currently in clinical use as an experimental cancer vaccine. Multiple intradermal injections of AlloStimÂź creates a dominate titer of allo-specific Th1/CTL memory cells in circulation, replacing the dominance of exhausted memory cells of the aged immune system. Upon viral encounter, by-stander activation of the allo-specific memory cells causes an immediate release of IFN-ϒ, leading to development of an “anti-viral state”, by-stander activation of innate cellular effector cells and activation of cross-reactive allo-specific CTL. In this manner, the non-specific activation of allo-specific Th1/CTL initiates a cascade of spatial and temporal immune events which act to limit the early viral titer. The release of endogenous heat shock proteins (HSP) and DAMP from lysed viral-infected cells, in the context of IFN-ϒ, creates of conditions for in situ vaccination leading to viral-specific Th1/CTL immunity. These viral-specific Th1/CTL provide sterilizing immunity and memory for protection from disease recurrence, while increasing the pool of Th1/CTL in circulation capable of responding to the next viral encounter

    sj-docx-1-psx-10.1177_00323217231168765 – Supplemental material for Government–Opposition Relations and the Vote of No-Confidence

    No full text
    Supplemental material, sj-docx-1-psx-10.1177_00323217231168765 for Government–Opposition Relations and the Vote of No-Confidence by Or Tuttnauer and Reuven Y Hazan in Political Studies</p

    Peribronchial lymphocyte activation in bleomycin-induced lung injury

    No full text
    The role of lymphocytes in bleomycin (Bleo)-induced lung injury remains obscure. In normal hamsters, peribronchial lymphatic tissue (PBLT) has been found to contain a large population of T lymphocytes responsive to interleukin 2 (IL-2) but not to IL-4. Lung injury induced by a single intratracheal instillation of Bleo in hamsters has been ameliorated by cyclosporin A (CyA). In the present study, using this model, PBLT-derived lymphocyte function was explored for 28 days after Bleo instillation. Increase in PBLT lymphocytes occurred at five time points investigated, reaching highest values on day +7 (p < 0.0025). Cell proliferation in response to concanavalin A was enhanced, while IL-2 +/- the mitogen had no effect. In contrast to its inactivity in the normal hamster, in the Bleo-injured animal IL-4 alone induced T cell proliferation (p = 0.0077) on day +7. CyA therapy initially suppressed and delayed recovery of the number of lymphocytes and their activation. The results of this study suggest the existence of a vulnerable period in Bleo-induced lung injury and indicate that lymphocytes participate in the pathogenesis of the insult to the tissue. The unresponsiveness to IL-2 and the emergence of cellular response to IL-4 indicate immune deviation in PBLT-derived T cells

    Cannabinoids Reduce Inflammation but Inhibit Lymphocyte Recovery in Murine Models of Bone Marrow Transplantation

    No full text
    Cannabinoids, the biologically active constituents of Cannabis, have potent neuronal and immunological effects. However, the basic and medical research dedicated to medical cannabis and cannabinoids is limited. The influence of these treatments on hematologic reconstitution and on the development of graft versus host disease (GVHD) after bone marrow transplantation (BMT) is largely unknown. In this research, we compared the influence of D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on lymphocyte activation in vitro and in murine BMT models. Our in vitro results demonstrate that these treatments decrease activated lymphocyte proliferation and affect cytokine secretion. We also discovered that CBD and THC utilize different receptors to mediate these effects. In vivo, in a syngeneic transplantation model, we demonstrate that all treatments inhibit lymphocyte reconstitution and show the inhibitory role of the cannabinoid receptor type 2 (CB2) on lymphocyte recovery. Although pure cannabinoids exhibited a superior effect in vitro, in an allogeneic (C57BL/6 to BALB/c) BMT mouse model, THC-high and CBD-high cannabis extracts treatment reduced the severity of GVHD and improved survival significantly better than the pure cannabinoids. Our results highlights the complexity of using cannabinoids-based treatments and the need for additional comparative scientific results

    Successful Antiangiogenic Therapy for Neuroblastoma With Thalidomide

    No full text
    • 

    corecore