5,735 research outputs found

    Effective Average Action of Chern-Simons Field Theory

    Full text link
    The renormalization of the Chern-Simons parameter is investigated by using an exact and manifestly gauge invariant evolution equation for the scale-dependent effective average action.Comment: 14 pages, late

    Cosmological Perturbations in Renormalization Group Derived Cosmologies

    Get PDF
    A linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid Universe with dynamically evolving Newton constant GG and cosmological constant Λ\Lambda is presented. A gauge-invariant formalism is developed by means of the covariant approach, and the acoustic propagation equations governing the evolution of the comoving fractional spatial gradients of the matter density, GG, and Λ\Lambda are thus obtained. Explicit solutions are discussed in cosmologies where both GG and Λ\Lambda vary according to renormalization group equations in the vicinity of a fixed point.Comment: 22 pages, revtex, subeqn.sty, to appear on IJMP

    Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Get PDF
    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations

    Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase

    Full text link
    Color centers in diamond nanocrystals are a new class of fluorescence markers that attract significant interest due to matchless brightness, photostability and biochemical inertness. Fluorescing diamond nanocrystals containing defects can be used as markers replacing conventional organic dye molecules, quantum dots or autofluorescent proteins. They can be applied for tracking and ultrahigh-resolution localization of the single markers. In addition the spin properties of diamond defects can be utilized for novel magneto-optical imaging (MOI) with nanometer resolution. We develop this technique to unravel the details of the rotary motions and the elastic energy storage mechanism of a single biological nanomotor FoF1-ATP synthase. FoF1-ATP synthase is the enzyme that provides the 'chemical energy currency' adenosine triphosphate, ATP, for living cells. The formation of ATP is accomplished by a stepwise internal rotation of subunits within the enzyme. Previously subunit rotation has been monitored by single-molecule fluorescence resonance energy transfer (FRET) and was limited by the photostability of the fluorophores. Fluorescent nanodiamonds advance these FRET measurements to long time scales.Comment: 10 pages, 4 figure

    Interplay between nanometer-scale strain variations and externally applied strain in graphene

    Get PDF
    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the non-linear elastic properties of graphene, both trends together yield a non-monotonic variation of the total displacements with increasing tensile strain. This variation allows to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples

    A Tachyonic Gluon Mass: Between Infrared and Ultraviolet

    Get PDF
    The gluon spin coupling to a Gaussian correlated background gauge field induces an effective tachyonic gluon mass. It is momentum dependent and vanishes in the UV only like 1/p^2. In the IR, we obtain stabilization through a positive m^2_{conf}(p^2) related to confinement. Recently a purely phenomenological tachyonic gluon mass was used to explain the linear rise in the q\bar q static potential at small distances and also some long standing discrepancies found in QCD sum rules. We show that the stochastic vacuum model of QCD predicts a gluon mass with the desired properties.Comment: 10 pages LaTeX, 2 figures using eps

    Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data

    Full text link
    The emergence of fractal features in the microscopic structure of space-time is a common theme in many approaches to quantum gravity. In this work we carry out a detailed renormalization group study of the spectral dimension dsd_s and walk dimension dwd_w associated with the effective space-times of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where these generalized dimensions are approximately constant for an extended range of length scales: a classical regime where ds=d,dw=2d_s = d, d_w = 2, a semi-classical regime where ds=2d/(2+d),dw=2+dd_s = 2d/(2+d), d_w = 2+d, and the UV-fixed point regime where ds=d/2,dw=4d_s = d/2, d_w = 4. On the length scales covered by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be in very good agreement with the data. This comparison also provides a natural explanation for the apparent puzzle between the short distance behavior of the spectral dimension reported from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.Comment: 26 pages, 6 figure

    The Complex Gap in Color Superconductivity

    Get PDF
    We solve the gap equation for color-superconducting quark matter in the 2SC phase, including both the energy and the momentum dependence of the gap, \phi=\phi(k_0,\vk). For that purpose a complex Ansatz for \phi is made. The calculations are performed within an effective theory for cold and dense quark matter. The solution of the complex gap equation is valid to subleading order in the strong coupling constant g and in the limit of zero temperature. We find that, for momenta sufficiently close to the Fermi surface and for small energies, the dominant contribution to the imaginary part of ϕ\phi arises from Landau-damped magnetic gluons. Further away from the Fermi surface and for larger energies the other gluon sectors have to be included into Im\phi. We confirm that Imϕ \phi contributes a correction of order g to the prefactor of \phi for on-shell quasiquarks sufficiently close to the Fermi surface, whereas further away from the Fermi surface Im\phi and Re\phi are of the same order. Finally, we discuss the relevance of Im\phi for the damping of quasiquark excitations.Comment: 23 pages, 3 figures, 8 tables. Typos corrected, minor corrections to the text. Accepted for publication in PR

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio

    Gluon Condensation in Nonperturbative Flow Equations

    Get PDF
    We employ nonperturbative flow equations for an investigation of the effective action in Yang-Mills theories. We compute the effective action Γ[B]\Gamma[B] for constant color magnetic fields BB and examine Savvidy's conjecture of an unstable perturbative vacuum. Our results indicate that the absolute minimum of Γ[B]\Gamma[B] occurs for B=0. Gluon condensation is described by a nonvanishing expectation value of the regularized composite operator FμνFμνF_{\mu\nu}F^{\mu\nu} which agrees with phenomenological estimates.Comment: 64 pages, late
    • …
    corecore