6 research outputs found

    Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are modulated by rafts

    Get PDF
    BACKGROUND: Most cancer cells are characterized by mobile lipids visible on proton NMR ((1)H-NMR), these being comprised mainly of methyl and methylene signals from lipid acyl chains. Erythroleukemia K562 cells show narrow signals at 1.3 and 0.9 ppm, corresponding to mobile lipids (methylene and methyl, respectively), which are reduced when K562 cells are multidrug resistant (MDR). While the significance of the mobile lipids is unknown, their subcellular localization is still a matter of debate and may lie in the membrane or the cytoplasm. In this study, we investigate the role of cholesterol in the generation of mobile lipid signals. RESULTS: The proportion of esterified cholesterol was found to be higher in K562-sensitive cells than in resistant cells, while the total cholesterol content was identical in both cell lines. Cholesterol extraction in the K562 wild type (K562wt) cell line and its MDR counterpart (K562adr), using methyl-β-cyclodextrin, was accompanied by a rise of mobile lipids in K562wt cells only. The absence of caveolae was checked by searching for the caveolin-1 protein in K562wt and K562adr cells. However, cholesterol was enriched in another membrane microdomain designated as "detergent-insoluble glycosphingomyelin complexes" or rafts. These microdomains were studied after extraction with triton X-100, a mild non-ionic detergent, revealing mobile lipid signals preserved only in the K562wt spectra. Moreover, following perturbation/disruption of these microdomains using sphingomyelinase, mobile lipids increased only in K562wt cells. CONCLUSION: These results suggest that cholesterol and sphingomyelin are involved in mobile lipid generation via microdomains of detergent-insoluble glycosphingomyelin complexes such as rafts. Increasing our knowledge of membrane microdomains in sensitive and resistant cell lines may open up new possibilities in resistance reversion

    Late Effects of Low-Dose Radiation on the Bone Marrow, Lung, and Testis Collected From the Same Exposed BALB/cJ Mice

    No full text
    We used 3 biological metrics highly relevant to health risks, that is, cell death, inflammation, and global DNA methylation, to determine the late effects of low doses (0.05 or 0.1 Gy) of 137 Cs γ rays on the bone marrow, lung, and testis collected at 6 months post-irradiation from the same exposed BALB/cJ mouse. This integrative approach has not been used for such a purpose. Mice exposed to 0 or 1 Gy of radiation served as a sham or positive control group, respectively. The results could deliver information for better health risk assessment across tissues, including better scientific basis for radiation protection and clinical application. We found no changes in the levels of all studied biological metrics (except a significant increase in the levels of an anti-inflammatory cytokine, ie, interleukin 10) in tissues of 0.05-Gy exposed mice, when compared to those in sham controls. In contrast, significantly increased levels of cell death and inflammation, including a significant loss of global 5-hydroxymethylcytosine, were found in all tissues of the same mice exposed to 0.1 or 1.0 Gy. Our data demonstrated not only no harm but also hormesis in the 0.05-Gy exposed mice. However, the hormetic effect appears to be dependent on biological metrics and tissue
    corecore