39 research outputs found

    Intracellular redox-modulated pathways as targets for effective approaches in the treatment of viral infection

    Get PDF
    Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses

    Paradigm Shift in Gastric Cancer Prevention: Harnessing the Potential of Aristolochia olivieri Extract

    Get PDF
    Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves’ methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications

    Cryptococcus neoformans Capsular Enlargement and Cellular Gigantism during Galleria mellonella Infection

    Get PDF
    We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5%) recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis

    An efficient, economical synthesis of hydroxytyrosol and its protected forms via Baeyer–Villiger oxidation

    No full text
    An efficient and practical preparation of hydroxytyrosol and its orthogonally-protected forms was developed from inexpensive tyrosol. The utilization of Baeyer–Villiger oxidation enables the chemoselective introduction of a phenolic hydroxyl group in good yield

    A potential host and virus targeting tool against COVID-19: Chemical characterization, antiviral, cytoprotective, antioxidant, respiratory smooth muscle relaxant effects of Paulownia tomentosa Steud

    Get PDF
    COronaVIrus Disease 2019 (COVID-19) is a newly emerging infectious disease that spread across the world, caused by the novel coronavirus Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Despite the advancements in science that led to the creation of the vaccine, there is still an urgent need for new antiviral drugs effective against SARS-CoV-2. This study aimed to investigate the antiviral effect of Paulownia tomentosa Steud extract against SARS-CoV-2 and to evaluate its antioxidant properties, including respiratory smooth muscle relaxant effects. Our results showed that P. tomentosa extract can inhibit viral replication by directly interacting with both the 3-chymotrypsin-like protease and spike protein. In addition, the phyto complex does not reduce lung epithelial cell viability and exerts a protective action in those cells damaged by tert-butyl hydroperoxide, a toxic agent able to alter cells’ functions via increased oxidative stress. These data suggest the potential role of P. tomentosa extract in COVID-19 treatment, since this extract is able to act both as an antiviral and a cytoprotective agent in vitro

    A Glucuronoxylomannan-Associated Immune Signature, Characterized by Monocyte Deactivation and an Increased Interleukin 10 Level, Is a Predictor of Death in Cryptococcal Meningitis

    No full text
    Background.  Cryptococcal meningitis remains a significant cause of death among human immunodeficiency virus type 1 (HIV)–infected persons in Africa. We aimed to better understand the pathogenesis and identify immune correlates of mortality, particularly the role of monocyte activation. Methods.  A prospective cohort study was conducted in Cape Town, South Africa. Patients with a first episode of cryptococcal meningitis were enrolled, and their immune responses were assessed in unstimulated and stimulated blood specimens, using flow cytometry and cytokine analysis. Results.  Sixty participants were enrolled (median CD4+ T-cell count, 34 cells/µL). Mortality was 23% (14 of 60 participants) at 14 days and 39% (22 of 57) at 12 weeks. Nonsurvivors were more likely to have an altered consciousness and higher cerebrospinal fluid fungal burden at presentation. Principal component analysis identified an immune signature associated with early mortality, characterized by monocyte deactivation (reduced HLA-DR expression and tumor necrosis factor α response to lipopolysaccharide); increased serum interleukin 6, CXCL10, and interleukin 10 levels; increased neutrophil counts; and decreased T-helper cell type 1 responses. This immune signature remained an independent predictor of early mortality after adjustment for consciousness level and fungal burden and was associated with higher serum titers of cryptococcal glucuronoxylomannan. Conclusions.  Cryptococcal-related mortality is associated with monocyte deactivation and an antiinflammatory blood immune signature, possibly due to Cryptococcus modulation of the host immune response. Validation in other cohorts is required

    2-Arylmelatonin analogues: Probing the 2-phenyl binding pocket of melatonin MT1 and MT2 receptors

    No full text
    In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency

    Antibody to Cryptococcus neoformans capsular glucuronoxylomannan promotes expression of interleukin-12Rβ2 subunit on human T cells in vitro through effects mediated by antigen-presenting cells

    No full text
    The results reported herein show that T cells responding to encapsulated Cryptococcus neoformans cells had reduced expression of interleukin-12 receptor β2 (IL-12Rβ2) in comparison to those responding to non-encapsulated cells. This suggested that encapsulation with glucuronoxylomannan (GXM), the principal constituent of the C. neoformans polysaccharide antiphagocytic capsule, inhibited expression of the IL-12Rβ2 subunit on T cells responding to cryptococcal antigens. Addition of GXM-binding monoclonal antibody (mAb) overcame this effect by promoting IL-12Rβ2 expression and by decreasing IL-1R expression on T cells. This effect may be a consequence of mAb-induced changes on antigen-presenting cells (APC) that are closely related to increased phagocytosis. Blocking of phagocytosis with monoiodacetic acid (MIA) precluded up-regulation of B7 expression on APC and was associated with diminished IL-12Rβ2 expression on T cells. The observed effects on T cells were interpreted as a consequence of increased APC function due to enhanced phagocytosis. These findings suggest a mechanism by which specific antibody can promote the polarization of the cellular immune response towards a Th1-like response and thus contribute to an enhanced cellular immune response against C. neoformans
    corecore