126 research outputs found

    Accumulation of hydrogen in titanium under irradiation with neutrons

    Get PDF
    The course of the nuclear reaction in titanium under neutron irradiation with formation of hydrogen was experimentally confirmed. Additional hydrogen and gamma quanta with an energy of 889 and 1120 keV are observed. The gamma-field effect should be taken into account when creating neutron protection based on titanium borides. The irradiation of titanium leads to a change in the thermoelectric power to 20%

    Specific Alleles of CLN7/MFSD8, a Protein That Localizes to Photoreceptor Synaptic Terminals, Cause a Spectrum of Nonsyndromic Retinal Dystrophy

    Get PDF
    Purpose: Recessive mutations in CLN7/MFSD8 usually cause variant late-infantile onset neuronal ceroid lipofuscinosis (vLINCL), a poorly understood neurodegenerative condition, though mutations may also cause nonsyndromic maculopathy. A series of 12 patients with nonsyndromic retinopathy due to novel CLN7/MFSD8 mutation combinations were investigated in this study. Methods: Affected patients and their family members were recruited in ophthalmic clinics at each center where they were examined by retinal imaging and detailed electrophysiology. Whole exome or genome next generation sequencing was performed on genomic DNA from at least one affected family member. Immunofluorescence confocal microscopy of murine retina cross-sections were used to localize the protein. Results: Compound heterozygous alleles were identified in six cases, one of which was always p.Glu336Gln. Such combinations resulted in isolated macular disease. Six further cases were homozygous for the variant p.Met454Thr, identified as a founder mutation of South Asian origin. Those patients had widespread generalized retinal disease, characterized by electroretinography as a rod-cone dystrophy with severe macular involvement. In addition, the photopic single flash electroretinograms demonstrated a reduced b- to a-wave amplitude ratio, suggesting dysfunction occurring after phototransduction. Immunohistology identified MFSD8 in the outer plexiform layer of the retina, a site rich in photoreceptor synapses. Conclusions: This study highlights a hierarchy of MFSD8 variant severity, predicting three consequences of mutation: (1) nonsyndromic localized maculopathy, (2) nonsyndromic widespread retinopathy, or (3) syndromic neurological disease. The data also shed light on the underlying pathogenesis by implicating the photoreceptor synaptic terminals as the major site of retinal disease

    Association of Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation With Early-Onset Retinal Dystrophy

    Get PDF
    Importance: Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is a rare disorder of N-linked glycosylation. Its retinal phenotype is not well described but could be important for disease recognition because it appears to be a consistent primary presenting feature. Objective: To investigate a series of patients with the same mutation in the SRD5A3 gene and thereby characterize its retinal manifestations and other associated features. Design, Setting and Participants: Seven affected individuals from 4 unrelated families with early-onset retinal dystrophy as a primary manifestation underwent comprehensive ophthalmic assessment, including retinal imaging and electrodiagnostic testing. Developmental and systemic findings were also recorded. Molecular genetic approaches, including targeted next-generation sequencing, autozygosity mapping, and apex microarray, were tried to reach a diagnosis; all participants were mutation negative. Whole-exome sequencing or whole-genome sequencing was used to identify the causative variant. Biochemical profiling was conducted to confirm a CDG type I defect. Patient phenotype data were collected over the course of ophthalmic follow-up, spanning a period of 20 years, beginning March 20, 1997, through September 15, 2016. Main Outcomes and Measures: Detailed clinical phenotypes as well as genetic and biochemical results. Results: The cohort consisted of 7 participants (5 females and 2 males) whose mean (SD) age at the most recent examination was 17.1 (3.9) years and who were all of South Asian ethnicity. Whole-exome sequencing and whole-genome sequencing identified the same homozygous SRD5A3 c.57G>A, p.(Trp19Ter) variant as the underlying cause of early-onset retinal dystrophy in each family. Detailed ocular phenotyping identified early-onset (aged ≤3 years) visual loss (mean [SD] best-corrected visual acuity, +0.95 [0.34] logMAR [20/180 Snellen]), childhood-onset nyctalopia, myopia (mean [SD] refractive error, -6.71 [-4.22]), and nystagmus. Six of the 7 patients had learning difficulties and psychomotor delay. Fundus autofluorescence imaging and optical coherence tomographic scans were abnormal in all patients, and electrodiagnostic testing revealed rod and cone dysfunction in the 5 patients tested. Conclusions and Relevance: Mutations in the SRD5A3 gene may cause early-onset retinal dystrophy, a previously underdescribed feature of the SRD5A3-CDG disorder that is progressive and may lead to serious visual impairment. SRD5A3 and other glycosylation disorder genes should be considered as a cause of retinal dystrophy even when systemic features are mild. Further delineation of SRD5A3-associated eye phenotypes can help inform genetic counseling for prognostic estimation of visual loss and disease progression

    Outcomes and predictive factors after cataract surgery in patients with neovascular age-related macular degeneration. The Fight Retinal Blindness! Project

    No full text
    Purpose: To evaluate outcomes and predictive factors of visual acuity (VA) change after cataract surgery in patients being treated for neovascular age-related macular degeneration (nAMD). Design: Retrospective, matched case-control study. Methods: We studied eyes undergoing cataract surgery that had been tracked since they first started treatment for nAMD. These eyes were compared with a cohort of unoperated phakic eyes being treated for nAMD (three per case) matched for treatment duration before cataract surgery, baseline VA, age and length of follow-up. Results: We included 124 patients that had cataract surgery and 372 matched controls. The mean (95% CI) VA gained was 10.6 letters (7.8, 13.2; P < 0.001) 12 months following surgery; 26.0% had gained ≥ 3 lines and 1.6% had lost ≥ 3 lines of VA. Visual acuity (mean [SD]) 12 months after surgery was higher in eyes that had cataract extraction compared with controls (65.8 [17.1] vs. 61.3 [20.8] letters respectively, P = 0.018). The proportion of visits where the choroidal neovascular (CNV) lesion was graded active and the mean number of injections were similar before and after surgery (P = 0.506 and P = 0.316, respectively), while both decreased in the control group, suggesting that surgery modestly increased the level of activity of the CNV lesion. Mean [SD] VA prior to surgery was lower in eyes that gained ≥15 letters compared with eyes that gained 0-14 letters (40.2 [21.4] vs. 62.1 [15.1], P < 0.001). Patients undergoing cataract surgery within the first 6 months of anti-VEGF therapy were more likely to lose rather than gain vision (20.8% lost vision vs. 12.8% and 4.4% gaining ≥15 or 0-14 letters respectively, P = 0.023). Age, receiving an injection at least 2 weeks before surgery, and the CNV lesion type had no discernible association with VA outcomes. Conclusions: We found evidence of a modest effect of cataract surgery on CNV lesion activity in eyes being treated for nAMD. Despite this, visual outcomes were reassuringly good. Cataract surgery within 6 months of starting treatment for nAMD should be avoided if possible.The Fight Retinal Blindness Project was supported by a grant from the Royal Australian NZ College of Ophthalmologists Eye Foundation (2007-2009), a grant from the National Health and Medical Research Council, Australia (NHMRC 2010-2012) and a grant from the Macula Disease Foundation, Australia. Mark Gillies is a Sydney Medical Foundation Fellow and is supported by an NHMRC practitioner fellowship. Daniel Barthelmes was supported by the Walter and Gertud Siegenthaler Foundation Zurich, Switzerland and the Swiss National Foundation. Vincent Daien was supported by the research grant of the French Society of Ophthalmology and by Servier. Funding was also provided by Novartis and Bayer

    Scleral Buckling for Primary Retinal Detachment: Outcomes of Scleral Tunnels versus Scleral Sutures

    Get PDF
    Purpose: There are primarily two techniques for affixing the scleral buckle (SB) to the sclera in the repair of rhegmatogenous retinal detachment (RRD): scleral tunnels or scleral sutures. Methods: This retrospective study examined all patients with primary RRD who were treated with primary SB or SB combined with vitrectomy from January 1, 2015 through December 31, 2015 across six sites. Two cohorts were examined: SB affixed using scleral sutures versus scleral tunnels. Pre- and postoperative variables were evaluated including visual acuity, anatomic success, and postoperative strabismus. Results: The mean preoperative logMAR VA for the belt loop cohort was 1.05 ± 1.06 (Snellen 20/224) and for the scleral suture cohort was 1.03 ± 1.04 (Snellen 20/214, p = 0.846). The respective mean postoperative logMAR VAs were 0.45 ± 0.55 (Snellen 20/56) and 0.46 ± 0.59 (Snellen 20/58, p = 0.574). The single surgery success rate for the tunnel cohort was 87.3% versus 88.6% for the suture cohort (p = 0.601). Three patients (1.0%) in the scleral tunnel cohort developed postoperative strabismus, but only one patient (0.1%) in the suture cohort (p = 0.04, multivariate p = 0.76). All cases of strabismus occurred in eyes that underwent SB combined with PPV (p = 0.02). There were no differences in vision, anatomic success, or strabismus between scleral tunnels versus scleral sutures in eyes that underwent primary SB. Conclusion: Scleral tunnels and scleral sutures had similar postoperative outcomes. Combined PPV/SB in eyes with scleral tunnels might be a risk for strabismus post retinal detachment surgery

    Recessive Retinopathy Consequent on Mutant G-Protein β Subunit 3 (GNB3)

    Get PDF
    IMPORTANCE: Mutations in phototransduction and retinal signaling genes are implicated in many retinopathies. To our knowledge, GNB3 encoding the G-protein β subunit 3 (Gβ3) has not previously been implicated in human disease. OBSERVATIONS: In this brief report, whole-exome sequencing was conducted on a patient with distinct inherited retinal disease presenting in childhood, with a phenotype characterized by nystagmus, normal retinal examination, and mild disturbance of the central macula on detailed retinal imaging. This sequencing revealed a homozygous GNB3 nonsense mutation (c.124C>T; p.Arg42Ter). Whole-exome sequencing was conducted from April 2015 to July 2015. CONCLUSIONS AND RELEVANCE: Expressed in cone photoreceptors and ON-bipolar cells, Gβ3 is essential in phototransduction and ON-bipolar cell signaling. Knockout of Gnb3 in mice results in dysfunction of cone photoreceptors and ON-bipolar cells and a naturally occurring chicken mutation leads to retinal degeneration. Identification of further affected patients may allow description of the phenotypic and genotypic spectrum of disease associated with GNB3 retinopathy

    Loss-of-function mutations in the CFH gene affecting alternatively encoded Factor H-like 1 protein cause dominant early-onset macular drusen

    Get PDF
    Purpose: To characterise the molecular mechanism underpinning early-onset macular drusen (EOMD), a phenotypically severe sub-type of age-related macular degeneration (AMD), in a sub-group of patients. Design: Multi-centre case series, in vitro experimentation and retrospective analysis of previously reported variants. Participants: Seven families with apparently autosomal dominant EOMD. Methods: Patients underwent comprehensive ophthalmic assessment. Affected individuals from families A, B and E underwent whole exome sequencing. The probands from families C, D, F and G underwent Sanger sequencing analysis of the Complement Factor H (CFH) gene. Mutant recombinant Factor H Like-1 (FHL-1) proteins were expressed in HEK293 cells to assess the impact on FHL-1 expression and function. Previously reported EOMD-causing variants in CFH were reviewed. Main Outcome Measures: Detailed clinical phenotypes, genomic findings, in vitro characterization of mutation effect on protein function, and postulation of the pathomechanism underpinning EOMD. Results: All affected participants presented with bilateral drusen. The earliest reported age of onset was 16 years with a median of 46 years). Ultra-rare (MAF ≤0.0001) CFH variants were identified as the cause of disease in each family: CFH c.1243del, p.(Ala415ProfsTer39) het; c.350+1G>T het; c.619+1G>A het, c.380G>A, p.(Arg127His) het; c.694C>T p.(Arg232Ter)het [identified in two unrelated families in this cohort]; and c.1291T>A, p.(Cys431Ser). All mutations affect complement control protein domains (CCP) 2-7, thus are predicted to impact both FHL-1, the predominant isoform in Bruch’s membrane(BrM) of the macula, and FH. In vitro analysis of recombinant proteins FHL-1R127H, FHL-1A415f/s and FHL-1C431S demonstrated that they are not secreted and thus are loss-of-function. Intra-cellular expression of mutant proteins was low, suggesting they may be rapidly degraded due to protein unfolding or instability. Review of 29 previously reported EOMD-causing mutations found that 75.8% (22/29) of impact FHL-1 and FH. In total, 86.2% (25/29) EOMD-associated variants cause haploinsufficiency of FH/FHL-1. Conclusions: EOMD is an under-recognised, phenotypically severe sub-type of AMD. We propose that haploinsufficiency of FHL-1, the main regulator of the complement pathway in BrM, where drusen develop, is an important mechanism underpinning the development of EOMD in a number of cases. Understanding the molecular basis of EOMD will shed light on AMD pathogenesis given their pathological similarities

    Novel homozygous splicing mutations in ARL2BP cause autosomal recessive retinitis pigmentosa

    Get PDF
    Purpose: Mutations in ARL2BP, encoding ADP-ribosylation factor-like 2 binding protein, have recently been implicated as a cause of autosomal recessive retinitis pigmentosa (arRP), with three homozygous variants identified to date. In this study, we performed next-generation sequencing to reveal additional arRP cases associated with ARL2BP variants. Methods: Whole-genome sequencing (WGS) or whole-exome sequencing (WES) was performed in 1,051 unrelated individuals recruited for the UK Inherited Retinal Disease Consortium and NIHR-BioResource Rare Diseases research studies. Sanger sequencing was used to validate the next-generation sequencing data, and reverse transcriptase (RT)-PCR analysis was performed on RNA extracted from blood from affected individuals to test for altered splicing of ARL2BP. Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography, fundus autofluorescence imaging, and spectral-domain optical coherence tomography. Results: Homozygous variants in ARL2BP (NM_012106.3) were identified in two unrelated individuals with RP. The variants, c.207+1G>A and c.390+5G>A, at conserved splice donor sites for intron 3 and intron 5, respectively, were predicted to alter the pre-mRNA splicing of ARL2BP. RT-PCR spanning the affected introns revealed that both variants caused abnormal splicing of ARL2BP in samples from affected individuals. Conclusions: This study identified two homozygous variants in ARL2BP as a rare cause of arRP. Further studies are required to define the underlying disease mechanism causing retinal degeneration as a result of mutations in ARL2BP and any phenotype-genotype correlation associated with residual levels of the wild-type transcript

    Biallelic variants in Plexin B2 (PLXNB2) cause amelogenesis imperfecta, hearing loss and intellectual disability.

    Get PDF
    BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously
    corecore