519 research outputs found

    Theoretical Overview Quark Matter '04

    Full text link
    The much wider transverse-momentum range accessible in heavy-ion collisions at RHIC and at the LHC allows us to disentangle the dynamics of partonic equilibration from the dynamics of delayed hadronization. This provides a novel tool for testing the equilibration mechanisms underlying QCD thermodynamics. Here, I argue, on the basis of simple formation-time arguments, why this is so, and I review recent theoretical developments in this context.Comment: 12 pages, Latex, 3 eps figures, invited introductory talk at Quark Matter 2004, Oakland, January 11-17, 200

    Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    Full text link
    The DEAP-1 \SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the \mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222^{222}Rn decay rate in the liquid argon was measured to be between 16 and \SI{26}{\micro\becquerel\per\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry

    Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

    Full text link
    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure

    Fast hadron freeze-out generator, part II: noncentral collisions

    Full text link
    The fast Monte Carlo procedure of hadron generation developed in our previous work is extended to describe noncentral collisions of nuclei. We consider different possibilities to introduce appropriate asymmetry of the freeze-out hyper-surface and flow velocity profile. For comparison with other models and experimental data we demonstrate the results based on the standard parametrizations of the hadron freeze-out hyper-surface and flow velocity profile assuming either a common chemical and thermal freeze-out or the chemically frozen evolution from chemical to thermal freeze-out. The C++ generator code is written under the ROOT framework and is available for public use at http://uhkm.jinr.ru/Comment: 27 pages including 7 figures as EPS-files; prepared using LaTeX package for publication in Physical Review

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV

    Full text link
    Two-particle correlations of direct photons were measured in central 208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was extracted from the correlation strength and compared to theoretical calculations.Comment: 5 pages, 4 figure

    Pion Freeze-Out Time in Pb+Pb Collisions at 158 A GeV/c Studied via pi-/pi+ and K-/K+ Ratios

    Get PDF
    The effect of the final state Coulomb interaction on particles produced in Pb+Pb collisions at 158 A GeV/c has been investigated in the WA98 experiment through the study of the pi-/pi+ and K-/K+ ratios measured as a function of transverse mass. While the ratio for kaons shows no significant transverse mass dependence, the pi-/pi+ ratio is enhanced at small transverse mass values with an enhancement that increases with centrality. A silicon pad detector located near the target is used to estimate the contribution of hyperon decays to the pi-/pi+ ratio. The comparison of results with predictions of the RQMD model in which the Coulomb interaction has been incorporated allows to place constraints on the time of the pion freeze-out.Comment: 9 pages, 12 figure

    Recent NA48/2 and NA62 results

    Full text link
    The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented statistics of rare kaon decays in the Ke4K_{e4} modes: Ke4(+)K_{e4}(+-) (K±π+πe±νK^\pm \to \pi^+ \pi^- e^\pm \nu) and Ke4(00)K_{e4}(00) (K±π0π0e±νK^\pm \to \pi^0 \pi^0 e^\pm \nu) with nearly one percent background contamination. It leads to the improved measurement of branching fractions and detailed form factor studies. New final results from the analysis of 381 K±π±γγK^\pm \to \pi^\pm \gamma \gamma rare decay candidates collected by the NA48/2 and NA62 experiments at CERN are presented. The results include a decay rate measurement and fits to Chiral Perturbation Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy Interactions. March 22-29 2014." conferenc
    corecore