5 research outputs found

    Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer

    Get PDF
    ESA’s Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 Όm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet

    Jupiter science Enabled by ESA's Jupiter Icy Moons Explorer

    Get PDF
    ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 Όm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet

    New constraints on Ganymede's hydrogen corona: Analysis of Lyman-α emissions observed by HST/STIS between 1998 and 2014

    No full text
    Far-ultraviolet observations of Ganymede's atmospheric emissions were obtained with the Space Telescope Imaging Spectrograph (STIS) onboard of the Hubble Space Telescope (HST) on several occasions between 1998 and 2014. We analyze the Lyman-α emission from four HST campaigns in order to constrain the abundance and variation of atomic hydrogen in Ganymede's atmosphere. We apply a forward model that estimates surface reflection and resonant scattering in an escaping corona of the solar Lyman-α flux, taking into account the effects of the hydrogen in the interplanetary medium. The atmospheric emissions around Ganymede's disk derived for the observations taken between 1998 and 2011 are consistent with a hydrogen corona in the density range of (5–8) × 103 cm−3 at the surface. The hydrogen density appears to be generally stable in that period. In 2014, Ganymede's corona brightness is approximately 3 times lower during two observations of Ganymede's trailing hemisphere and hardly detectable at all during two observations of the leading hemisphere. We also investigate extinction of Ganymede's coronal emissions in the Earth's upper atmosphere or geocorona. For small Doppler shifts, resonant scattering in the geocorona of the moon corona emissions can effectively reduce the brightness observed by HST. In the case of the 2014 leading hemisphere observations, an estimated extinction of 80% might explain the non-detection of Ganymede's hydrogen corona. Geocoronal extinction might also explain a previously detected hemispheric difference from Callisto's hydrogen corona

    Extreme exospheric dynamics at Charon: Implications for the red spot

    No full text
    Charon's exosphere may exhibit extreme seasonal dynamics, with centuries of quiescence punctuated by short lived (∌4 earth years) exospheric surges near the equinoxes, as spring sunrise bi-annually drives frozen methane off the polar night zones. Charon's pole-centric red spot has been proposed to be the product of Ly-α photolysis of frozen methane into refractory hydrocarbon “tholins”, but the role of exospheric dynamics in the red material's formation has not been investigated. We show with exospheric modeling that methane “polar-swap”, in which exospheric CH4 sublimated from the spring polar zone is rapidly re-frozen onto the autumn hemisphere, deposits ∌30 ÎŒm polar frosts too thick for Ly-α light to penetrate. Ethane, the primary methane photoproduct under these conditions, may unlike methane remain frozen decades after polar sunrise under solar wind exposure. Solar wind radiolysis of polar ethane frost synthesizes higher-order refractories that may contribute to the coloration of Charon's polar zones

    Extreme exospheric dynamics at Charon: Implications for the red spot

    No full text
    Charon's exosphere may exhibit extreme seasonal dynamics, with centuries of quiescence punctuated by short lived (∌4 earth years) exospheric surges near the equinoxes, as spring sunrise bi-annually drives frozen methane off the polar night zones. Charon's pole-centric red spot has been proposed to be the product of Ly-α photolysis of frozen methane into refractory hydrocarbon “tholins”, but the role of exospheric dynamics in the red material's formation has not been investigated. We show with exospheric modeling that methane “polar-swap”, in which exospheric CH4 sublimated from the spring polar zone is rapidly re-frozen onto the autumn hemisphere, deposits ∌30 ÎŒm polar frosts too thick for Ly-α light to penetrate. Ethane, the primary methane photoproduct under these conditions, may unlike methane remain frozen decades after polar sunrise under solar wind exposure. Solar wind radiolysis of polar ethane frost synthesizes higher-order refractories that may contribute to the coloration of Charon's polar zones
    corecore