6 research outputs found

    The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants

    Get PDF
    [EN] CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T-1 plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering.This work had been funded by EU Horizon 2020 Project Newcotiana Grant 760331 and PID2019-108203RB-100 Plan Nacional I+D, Spanish Ministry of Economy and Competitiveness. MV-V was recipient of aGeneralitat Valenciana and Fondo Social Europeo post-doctoral grant. JB-O and SS were recipients of FPI fellowships. CP was recipient of a Santiago Grisolia fellowship (Generalitat Valenciana).Vazquez-Vilar, M.; Garcia-Carpintero, V.; Selma, S.; Bernabé-Orts, JM.; Sánchez-Vicente, J.; Salazar-Sarasua, B.; Ressa, A.... (2021). The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants. Frontiers in Plant Science. 12:1-14. https://doi.org/10.3389/fpls.2021.6899371141

    Microbial ecology, biochemical and nutritional features in sprouted composite type I sourdough made of wheat and blend flours

    No full text
    Germination is a biotechnological process helpful in obtaining new plants from grains. We tested the impact of processing condition (sprouting and dough yield) and flour composition on type I sourdoughs biochemical and nutritional parameters we here used four flour matrices and precisely: i) refined commercial wheat flour, ii) sprouted and iii) non-sprouted whole wheat flour and iv) a blend composed of sprouted whole wheat and sprouted lentils. We here compared a set of 24 samples based on different group stratifications including three different sampling times (starting, after 24h and at the 10th refreshment). Moreover, we inspected the microbiota and its relative taxa abundance by 16S rRNA target sequencing and qPCR absolute quantification. Our result highlighted how the sprouted process together with the dough yield influenced key substrate like raffinose and lead to a change of taxa composition as evinced for the increased relative abundances of Pediococcus genus. Other key taxa in the microbiota were shaped by tested conditions and the alpha and beta diversity evidenced how matrix impact the intergroup clustering. The presented results shed new light on the increased properties and the related health promoting effects of type I sourdough obtained with the sprouting process

    Gluten-Free Bread Enriched with Artichoke Leaf Extract In Vitro Exerted Antioxidant and Anti-Inflammatory Properties

    No full text
    Due to its high nutritional value and broad beneficial effects, the artichoke plant (Cynara cardunculus L.) is an excellent healthy food candidate. Additionally, the artichoke by-products are usually discarded even though they still contain a huge concentration of dietary fibers, phenolic acids, and other micronutrients. The present work aimed to characterize a laboratory-made gluten-free bread (B) using rice flour supplemented with a powdered extract from artichoke leaves (AEs). The AE, accounting for the 5% of titratable chlorogenic acid, was added to the experimental gluten-free bread. Accounting for different combinations, four different bread batches were prepared. To evaluate the differences, a gluten-free type-II sourdough (tII-SD) was added in two doughs (SB and SB-AE), while the related controls (YB and YB-AE) did not contain the tII-SD. Profiling the digested bread samples, SB showed the lowest glycemic index, while SB-AE showed the highest antioxidant properties. The digested samples were also fermented in fecal batches containing viable cells from fecal microbiota samples obtained from healthy donors. Based on plate counts, no clear tendencies emerged concerning the analyzed microbial patterns; by contrast, when profiling volatile organic compounds, significant differences were observed in SB-AE, exhibiting the highest scores of hydrocinnamic and cyclohexanecarboxylic acids. The fecal fermented supernatants were recovered and assayed for healthy properties on human keratinocyte cell lines against oxidative stress and for effectiveness in modulating the expression of proinflammatory cytokines in Caco-2 cells. While the first assay emphasized the contribution of AE to protect against stressor agents, the latter enlightened how the combination of SB with AE decreased the cellular TNF-α and IL1-β expression. In conclusion, this preliminary study suggests that the combination of AE with sourdough biotechnology could be a promising tool to increase the nutritional and healthy features of gluten-free bread

    Anaplastic large-cell periprosthetic lymphoma of the breast: could fibrin be an early radiological indicator of the presence of disease?

    No full text
    The onset characteristics of the anaplastic large cell lymphoma (BI-ALCL) are non-specific and the diagnosis is often difficult and based on clinical suspicion and cytological sampling. The presence of non-pathognomonic radiological signs may delay the diagnosis of BI-ALCL, influencing patient prognosis. This could have an important social impact, considering that the incidence of BI-ALCL correlates with the number of prosthetic implants, which is in constant increase worldwide. The aim of this study was to verify if fibrin can represent a potential early radiological sign of the disease

    Effect of Seasonality on Microbiological Variability of Raw Cow Milk from Apulian Dairy Farms in Italy

    No full text
    Raw cow milk is one of the most complex and unpredictable food matrices shaped by the interaction between biotic and abiotic factors. Changes in dairy farming conditions impact the quality and safety of milk, which largely depend on seasonality. Changes in microbiome composition and relative metabolic pathways are derived from microbial interactions, as well as from seasonality, mammary, and extramammary conditions (e.g., farm management and outdoor environment). Breeding data from >600 Apulian farms were examined, and the associated physicochemical parameters were processed by a reductionist approach to obtain a raw cow milk sample subset. We investigated the microbiological variability in cultivable and 16S rRNA sequencing microbiota as affected by seasonal fluctuations at two time points (winter and summer seasons). We identified families (Xanthomonadaceae, Enterobacteriaceae, and Pseudomonadaceae) whose increased abundance during winter may cause a shift toward a pathobiont microbial niche that leads to lower milk quality. Apulian summer season conditions were advantageous to the presence of specific taxa, i.e., Streptococcaceae (i.e., Lactococcus) and Limosilactobacillus fermentum, which in turn may favor better milk preservation. IMPORTANCE The strength of this study lies in the microbiological characterization of a wide range of farm management data to achieve a more comprehensive framework of Apulian milk. Specific regional pedoclimatic and management conditions impact the taxa present and their abundances within this ecological food niche. The obtained results lay the groundwork for comparison with other worldwide extensive farming areas.The strength of this study lies in the microbiological characterization of a wide range of farm management data to achieve a more comprehensive framework of Apulian milk. Specific regional pedoclimatic and management conditions impact the taxa present and their abundances within this ecological food niche. The obtained results lay the groundwork for comparison with other worldwide extensive farming areas
    corecore