59 research outputs found

    Annonacin, ein natĂŒrlicher Komplex-I Inhibitor, erhöht die Tau-Phosphorylierung im Gehirn von FTDP-17 transgenen MĂ€usen

    Get PDF
    Tauopathien sind eine Gruppe von neurodegenerativen Erkrankungen, die durch die Akkumulation von hyperphosphoryliertem Tau, einem Mikrotubuli-assoziierten Protein, gekennzeichnet sind. Sie stellen in Hinblick auf ihre Klinik und Ätiologie ein heterogenes Krankheitsbild dar. Die genauen Mechanismen, die zu der Entstehung der Erkrankungen fĂŒhren, sind noch ungeklĂ€rt. Eine Tauopathie, die als vorwiegend umweltbedingt gilt, kommt auf der karibischen Inselgruppe Guadeloupe vor und konnte Einblicke in die Entstehung von Tau-Pathologie zugrunde liegenden Pathomechanismen liefern. Es gibt Hinweise, dass die Entstehung dieser Tauopathie mit dem Konsum der FrĂŒchte und BlĂ€tter des dort beheimateten Baumes Annona muricata und dem enthaltenen Toxin Annonacin in Zusammenhang steht (Caparros-Lefebvre und Elbaz et al., 1999; Champy et al., 2005; Lannuzel et al., 2007). Annonacin ist ein Inhibitor von Komplex-I der mitochondrialen Atmungskette, der experimentell in vitro und in vivo zu neuronalem Untergang und Tau-Pathologie fĂŒhrt (Lannuzel et al., 2003; Champy et al., 2004; Escobar-Khondiker et al., 2007). Auf der anderen Seite gibt es hereditĂ€re Tauopathien, wie die Frontotemporalen Demenzen mit Parkinsonismus und Kopplung an das Chromosom 17 (FTDP-17). Verschiedene Mutationen im MAPT Gen, die meist durch ein autosomal-dominantes Muster vererbt werden, fĂŒhren bei dieser Gruppe zur Entstehung der typischen Tau-Pathologie. Die bislang durchgefĂŒhrten Untersuchungen konnten nicht klĂ€ren, ob Annonacin die Hyperphosphorylierung des Tau-Proteins, wie sie in Tauopathien anzutreffen ist, reproduziert und inwieweit eine genetische VerĂ€nderung des Tau-Proteins diesen Effekt begĂŒnstigt. In der vorliegenden Studie bedienten wir uns zur Lösung dieser Fragestellung des Komplex-1-Inhibitors Annonacin und eines transgenen Mausmodelles, das humanes Tau mit der R406W-Mutation ĂŒberexprimiert

    An autopsy-confirmed case of progressive supranuclear palsy with predominant postural instability

    Get PDF
    Postural instability and supranuclear gaze palsy represent the key symptoms of Richardson's syndrome, the most frequent clinical manifestation of progressive supranuclear palsy (PSP). However, a proportion of PSP patients never develops ocular motor symptoms, which prevents clinicians from establishing the diagnosis during lifetime according to current diagnostic criteria. We present one instructive autopsy-confirmed PSP case with prospective video-documented clinical course, showing striking temporal divergence of initially present postural instability and delayed development of ocular motor dysfunction. Brain imaging and autopsy findings were typical of PSP, but the temporal sequence of symptoms was unusual with isolated postural instability predominating the clinical course for many years and slowing of vertical saccades/supranuclear gaze palsy evolving not until the 9th/11th year after disease onset. Although other differential diagnoses were unlikely, this patient did not pass the threshold for possible or probable diagnosis of PSP according to current diagnostic criteria until very late in the disease course. This first well documented, autopsy confirmed case of PSP with predominant postural instability further expands the clinical spectrum of PSP and points out the need of new clinical diagnostic criteria with sufficient sensitivity and specificity for an early and reliable diagnosis

    Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson's disease

    Get PDF
    Background: The decreased ability to carry out vertical saccades is a key symptom of Progressive Supranuclear Palsy (PSP). Objective measurement devices can help to reliably detect subtle eye movement disturbances to improve sensitivity and specificity of the clinical diagnosis. The present study aims at transferring findings from restricted stationary video-oculography (VOG) to a wearable head-mounted device, which can be readily applied in clinical practice. Methods: We investigated the eye movements in 10 possible or probable PSP patients, 11 Parkinson's disease (PD) patients, and 10 age-matched healthy controls (HCs) using a mobile, gaze-driven video camera setup (EyeSeeCam). Ocular movements were analyzed during a standardized fixation protocol and in an unrestricted real-life scenario while walking along a corridor. Results: The EyeSeeCam detected prominent impairment of both saccade velocity and amplitude in PSP patients, differentiating them from PD and HCs. Differences were particularly evident for saccades in the vertical plane, and stronger for saccades than for other eye movements. Differences were more pronounced during the standardized protocol than in the real-life scenario. Conclusions: Combined analysis of saccade velocity and saccade amplitude during the fixation protocol with the EyeSeeCam provides a simple, rapid (<20 s), and reliable tool to differentiate clinically established PSP patients from PD and HCs. As such, our findings prepare the ground for using wearable eye-tracking in patients with uncertain diagnoses

    Superiority of Formalin-Fixed Paraffin-Embedded Brain Tissue for in vitro Assessment of Progressive Supranuclear Palsy Tau Pathology With [F-18]PI-2620

    Get PDF
    Objectives: Autoradiography on brain tissue is used to validate binding targets of newly discovered radiotracers. The purpose of this study was to correlate quantification of autoradiography signal using the novel next-generation tau positron emission tomography (PET) radiotracer [18F]PI-2620 with immunohistochemically determined tau-protein load in both formalin-fixed paraffin-embedded (FFPE) and frozen tissue samples of patients with Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP). Methods: We applied [18F]PI-2620 autoradiography to postmortem cortical brain samples of six patients with AD, five patients with PSP and five healthy controls, respectively. Binding intensity was compared between both tissue types and different disease entities. Autoradiography signal quantification (CWMR = cortex to white matter ratio) was correlated with the immunohistochemically assessed tau load (AT8-staining, %-area) for FFPE and frozen tissue samples in the different disease entities. Results: In AD tissue, relative cortical tracer binding was higher in frozen samples when compared to FFPE samples (CWMRfrozen vs. CWMRFFPE: 2.5-fold, p < 0.001), whereas the opposite was observed in PSP tissue (CWMRfrozen vs. CWMRFFPE: 0.8-fold, p = 0.004). In FFPE samples, [18F]PI-2620 autoradiography tracer binding and immunohistochemical tau load correlated significantly for both PSP (R = 0.641, p < 0.001) and AD tissue (R = 0.435, p = 0.016), indicating a high agreement of relative tracer binding with underlying pathology. In frozen tissue, the correlation between autoradiography and immunohistochemistry was only present in AD (R = 0.417, p = 0.014) but not in PSP tissue (R = −0.115, p = n.s.). Conclusion: Our head-to-head comparison indicates that FFPE samples show superiority over frozen samples for autoradiography assessment of PSP tau pathology by [18F]PI-2620. The [18F]PI-2620 autoradiography signal in FFPE samples reflects AT8 positive tau in samples of both PSP and AD patients

    Superiority of Formalin-Fixed Paraffin-Embedded Brain Tissue for in vitro Assessment of Progressive Supranuclear Palsy Tau Pathology With [18F]PI-2620

    Get PDF
    Objectives: Autoradiography on brain tissue is used to validate binding targets of newly discovered radiotracers. The purpose of this study was to correlate quantification of autoradiography signal using the novel next-generation tau positron emission tomography (PET) radiotracer [18F]PI-2620 with immunohistochemically determined tau-protein load in both formalin-fixed paraffin-embedded (FFPE) and frozen tissue samples of patients with Alzheimer’s disease (AD) and Progressive Supranuclear Palsy (PSP). Methods: We applied [18F]PI-2620 autoradiography to postmortem cortical brain samples of six patients with AD, five patients with PSP and five healthy controls, respectively. Binding intensity was compared between both tissue types and different disease entities. Autoradiography signal quantification (CWMR = cortex to white matter ratio) was correlated with the immunohistochemically assessed tau load (AT8-staining, %-area) for FFPE and frozen tissue samples in the different disease entities. Results: In AD tissue, relative cortical tracer binding was higher in frozen samples when compared to FFPE samples (CWMRfrozen vs. CWMRFFPE: 2.5-fold, p < 0.001), whereas the opposite was observed in PSP tissue (CWMRfrozen vs. CWMRFFPE: 0.8-fold, p = 0.004). In FFPE samples, [18F]PI-2620 autoradiography tracer binding and immunohistochemical tau load correlated significantly for both PSP (R = 0.641, p < 0.001) and AD tissue (R = 0.435, p = 0.016), indicating a high agreement of relative tracer binding with underlying pathology. In frozen tissue, the correlation between autoradiography and immunohistochemistry was only present in AD (R = 0.417, p = 0.014) but not in PSP tissue (R = −0.115, p = n.s.). Conclusion: Our head-to-head comparison indicates that FFPE samples show superiority over frozen samples for autoradiography assessment of PSP tau pathology by [18F]PI-2620. The [18F]PI-2620 autoradiography signal in FFPE samples reflects AT8 positive tau in samples of both PSP and AD patients

    Clinical Conditions “Suggestive of Progressive Supranuclear Palsy”—Diagnostic Performance

    Get PDF
    Background: The Movement Disorder Society diagnostic criteria for progressive supranuclear palsy introduced the diagnostic certainty level “suggestive of progressive supranuclear palsy” for clinical conditions with subtle signs, suggestive of the disease. This category aims at the early identification of patients, in whom the diagnosis may be confirmed as the disease evolves. Objective: To assess the diagnostic performance of the defined clinical conditions suggestive of progressive supranuclear palsy in an autopsy-confirmed cohort. Methods: Diagnostic performance of the criteria was analyzed based on retrospective clinical data of 204 autopsy-confirmed patients with progressive supranuclear palsy and 216 patients with other neurological diseases. Results: The conditions suggestive of progressive supranuclear palsy strongly increased the sensitivity compared to the National Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear Palsy criteria. Within the first year after symptom onset, 40% of patients with definite progressive supranuclear palsy fulfilled criteria for suggestive of progressive supranuclear palsy. Two-thirds of patients suggestive of progressive supranuclear palsy evolved into probable progressive supranuclear palsy after an average of 3.6 years. Application of the criteria for suggestive of progressive supranuclear palsy reduced the average time to diagnosis from 3.8 to 2.2 years. Conclusions: Clinical conditions suggestive of progressive supranuclear palsy allow earlier identification of patients likely to evolve into clinically possible or probable progressive supranuclear and to have underlying progressive supranuclear palsy pathology. Further work needs to establish the specificity and positive predictive value of this category in real-life clinical settings, and to develop specific biomarkers that enhance their diagnostic accuracy in early disease stages

    Distribution patterns of tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. W

    Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be?

    Get PDF
    PSP is a pathologically defined neurodegenerative tauopathy with a variety of clinical presentations including typical Richardson's syndrome and other variant PSP syndromes. A large body of neuroimaging research has been conducted over the past two decades, with many studies proposing different structural MRI and molecular PET/SPECT biomarkers for PSP. These include measures of brainstem, cortical and striatal atrophy, diffusion weighted and diffusion tensor imaging abnormalities, [18F] fluorodeoxyglucose PET hypometabolism, reductions in striatal dopamine imaging and, most recently, PET imaging with ligands that bind to tau. Our aim was to critically evaluate the degree to which structural and molecular neuroimaging metrics fulfill criteria for diagnostic biomarkers of PSP. We queried the PubMed, Cochrane, Medline, and PSYCInfo databases for original research articles published in English over the past 20 years using postmortem diagnosis or the NINDS-SPSP criteria as the diagnostic standard from 1996 to 2016. We define a five-level theoretical construct for the utility of neuroimaging biomarkers in PSP, with level 1 representing group-level findings, level 2 representing biomarkers with demonstrable individual-level diagnostic utility, level 3 representing biomarkers for early disease, level 4 representing surrogate biomarkers of PSP pathology, and level 5 representing definitive PSP biomarkers of PSP pathology. We discuss the degree to which each of the currently available biomarkers fit into this theoretical construct, consider the role of biomarkers in the diagnosis of Richardson's syndrome, variant PSP syndromes and autopsy confirmed PSP, and emphasize current shortfalls in the field. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    A Modified Progressive Supranuclear Palsy Rating Scale

    Get PDF
    Background: The Progressive Supranuclear Palsy Rating Scale is a prospectively validated physician-rated measure of disease severity for progressive supranuclear palsy. We hypothesized that, according to experts' opinion, individual scores of items would differ in relevance for patients' quality of life, functionality in daily living, and mortality. Thus, changes in the score may not equate to clinically meaningful changes in the patient's status. Objective: The aim of this work was to establish a condensed modified version of the scale focusing on meaningful disease milestones. Methods: Sixteen movement disorders experts evaluated each scale item for its capacity to capture disease milestones (0 = no, 1 = moderate, 2 = severe milestone). Items not capturing severe milestones were eliminated. Remaining items were recalibrated in proportion to milestone severity by collapsing across response categories that yielded identical milestone severity grades. Items with low sensitivity to change were eliminated, based on power calculations using longitudinal 12-month follow-up data from 86 patients with possible or probable progressive supranuclear palsy. Results: The modified scale retained 14 items (yielding 0–2 points each). The items were rated as functionally relevant to disease milestones with comparable severity. The modified scale was sensitive to change over 6 and 12 months and of similar power for clinical trials of disease-modifying therapy as the original scale (achieving 80% power for two-sample t test to detect a 50% slowing with n = 41 and 25% slowing with n = 159 at 12 months). Conclusions: The modified Progressive Supranuclear Palsy Rating Scale may serve as a clinimetrically sound scale to monitor disease progression in clinical trials and routine
    • 

    corecore