72 research outputs found

    Zeolithe - Maßgeschneiderte "ReaktionsgefÀße" mit Nanodimensionen

    Get PDF
    This contribution presents a short overview of the state-ofthe-art and prospects of zeolitic molecular sieves as versatile microporous materials for science and technology. Zeolites are crystalline framework aluminosilicates. The regular pore system of the zeolites, with cavities and channels of subnanometre dimensions, as well as the characteristic properties resulting therefrom, predestine them for a broad range of applications as ion exchangers, adsorbents and catalysts in chemical technology. The most recent results of zeolite research prove that the potential of zeolitic molecular sieves is still far from being exhausted, and that various subsections of chemistry, physics, biology, microstructure technology, etc. are directing increasing interest to this substance class.Der Beitrag gibt einen kurzen Überblick zum Stand und zu Perspektiven zeolithischer Molekularsiebe als vielseitige mikroporâse Materialien für Wissenschaft und Technik. Zeolithe sind kristalline Gerüst- Alumosilicate. Das regelmÀßige Porensystem der Zeolithe mit HohlrÀumen und KanÀlen in Subnanometerdimensionen sowie die daraus resultierenden charakteristischen Eigenschaften prÀdestinieren sie für einen breiten Einsatz als Ionenaustauscher, Adsorbentien und Katalysatoren in der chemischen Technik. Die neueren Erkenntnisse der Zeolithforschung belegen, dass das Anwendungspotenzial zeolithischer Molekularsiebe noch lange nicht erschâpft ist und dass vielfÀltige Teilgebiete der Chemie, Physik, Biologie, Mikrostrukturtechnik etc. dieser Substanzklasse zunehmendes Interesse entgegenbringen

    Bioethanol im Fokus der nachhaltigen Energie- und Chemiewirtschaft

    Get PDF
    GegenwΓ€rtig stellen die fossilen Ressourcen ErdΓΆl, Erdgas und Kohle die wichtigste Rohstoffbasis fΓΌr die Energie- und Chemiewirtschaft dar. Doch ist ein Wechsel zu erneuerbaren Rohstoffen in greifbare NΓ€he gerΓΌckt. Hierbei muss insbesondere die pflanzliche Biomasse und das daraus erhΓ€ltliche Bioethanol als nahezu unerschΓΆpfliche Rohstoffquelle betrachtet werden. Neben der energetischen Nutzung von Bioethanol kann es darΓΌber hinaus als Plattformchemikalie zum Aufbau neuer ChemikalienstammbΓ€ume verwendet werden.The fossil resources oil, natural gas and coal are currently the most important fuels and raw materials for the energy and chemicals industries. A switch to renewable resources, however, is now within grasp. In this context, crop-based biomass and the bioethanol which can be obtained therefrom can be seen as practically inexhaustible sources of raw materials. Alongside the use of bioethanol as a fuel, it could also serve as a platform chemical for new derivative product families

    Conversion of the Propane–Butane Fraction into Arenes on MFI Zeolites Modified by Zinc Oxide and Activated by Low-Temperature Plasma

    Get PDF
    The effect of modification of MFI zeolite 1–5 wt.% ZnO activated by plasma on acid and catalytic properties in the conversion of the propane–butane fraction into arenes was investigated. The high-silica zeolites with silicate module 45 were synthesized from alkaline alumina–silica gels in the presence of an β€˜X-oil’ organic structure-forming additive. The modification of the zeolite with zinc was carried out by impregnating the zeolite granules in the H-form with an aqueous solution of Zn(NO3)2. The obtained zeolites were characterized by X-ray phase analysis and IR spectroscopy. It is shown that the synthesized zeolites belong to the high-silica MFI zeolites. The study of microporous zeolite-containing catalysts during the conversion of C3-C4 alkanes to aromatic hydrocarbons made it possible to establish that the highest yield of aromatic hydrocarbons is observed on zeolite catalysts modified with 1 and 3% ZnO and amount to 63.7 and 64.4% at 600 Β°C, respectively, which is 7.7–8.4% more than on the original zeolite. The preliminary activation of microporous zeolites modified with 1–5% ZnO and plasma leads to an increase in the yield of aromatic hydrocarbons from the propane–butane fraction; the maximum yield of arenes is observed in zeolite catalysts modified with 1 and 3% ZnO and activated by plasma, amounting to 64.9 and 65.5% at 600 Β°C, respectively, which is 8.9–9.5% more than on the initial zeolite. The activity of the zeolite catalysts modified by ZnO and activated by plasma show good agreement with their acid properties. Activation of the zeolites modified by 1 and 3% ZnO and plasma leads to an increase in the concentration of the weak acid sites of the catalyst to 707 and 764 mmol/g in comparison with plasma-inactivated 1 and 3% ZnO/ZKE-XM catalysts at 626 and 572 mmol/g, respectively

    Conversion of the Propane–Butane Fraction into Arenes on MFI Zeolites Modified by Zinc Oxide and Activated by Low-Temperature Plasma

    Get PDF
    The effect of modification of MFI zeolite 1–5 wt.% ZnO activated by plasma on acid and catalytic properties in the conversion of the propane–butane fraction into arenes was investigated. The high-silica zeolites with silicate module 45 were synthesized from alkaline alumina–silica gels in the presence of an β€˜X-oil’ organic structure-forming additive. The modification of the zeolite with zinc was carried out by impregnating the zeolite granules in the H-form with an aqueous solution of Zn(NO3)2. The obtained zeolites were characterized by X-ray phase analysis and IR spectroscopy. It is shown that the synthesized zeolites belong to the high-silica MFI zeolites. The study of microporous zeolite-containing catalysts during the conversion of C3-C4 alkanes to aromatic hydrocarbons made it possible to establish that the highest yield of aromatic hydrocarbons is observed on zeolite catalysts modified with 1 and 3% ZnO and amount to 63.7 and 64.4% at 600 Β°C, respectively, which is 7.7–8.4% more than on the original zeolite. The preliminary activation of microporous zeolites modified with 1–5% ZnO and plasma leads to an increase in the yield of aromatic hydrocarbons from the propane–butane fraction; the maximum yield of arenes is observed in zeolite catalysts modified with 1 and 3% ZnO and activated by plasma, amounting to 64.9 and 65.5% at 600 Β°C, respectively, which is 8.9–9.5% more than on the initial zeolite. The activity of the zeolite catalysts modified by ZnO and activated by plasma show good agreement with their acid properties. Activation of the zeolites modified by 1 and 3% ZnO and plasma leads to an increase in the concentration of the weak acid sites of the catalyst to 707 and 764 mmol/g in comparison with plasma-inactivated 1 and 3% ZnO/ZKE-XM catalysts at 626 and 572 mmol/g, respectively

    Application of the Global Optimization Method for the Parameters Identification of the Mathematical Model for the Transesterification Reaction of Vegetable Oil in the Microreactor

    Get PDF
    Π’ Π΄Π°Π½ΠΈΠΉ час Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΈΠΌ Ρ” застосування ΠΌΡ–ΠΊΡ€ΠΎΡ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ для Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° Π±Ρ–ΠΎΠΏΠ°Π»ΠΈΠ² ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΏΠ΅Ρ€Π΅Π΅Ρ‚Π΅Ρ€ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— рослинних ΠΎΠ»Ρ–ΠΉ Π΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΈΠΌ спиртом. Ця рСакція ΠΎΠΏΠΈΡΡƒΡ”Ρ‚ΡŒΡΡ складною ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡŽ модСллю. Для Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ– Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ провСсти Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρƒ ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–ΡŽ.Nowadays the use of microreactor technologies for production of biofuels by the transesterification of vegetable oils with ethanol is very relevant. This reaction is described by complex mathematical model. To identify the parameters of a mathematical model, it is necessary to carry out a global optimization.Π’ настоящСС врСмя Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ являСтся ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΡ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ для получСния Π±ΠΈΠΎΡ‚ΠΎΠΏΠ»ΠΈΠ² ΠΏΡƒΡ‚Π΅ΠΌ пСрСэтСрификации Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… масСл этиловым спиртом. Π­Ρ‚Π° рСакция описываСтся слоТной матСматичСской модСлью. Для ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ произвСсти Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½ΡƒΡŽ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡŽ

    "Комп'ΡŽΡ‚Π΅Ρ€Π½Π΅ модСлювання Ρ– кСрування Π² Ρ‚Π΅Ρ…Π½Ρ–Ρ†Ρ– Ρ‚Π° тСхнологіях КМКВВ-2021", ДСв’ята ΠΌΡ–ΠΆΠ½Π°Ρ€ΠΎΠ΄Π½Π° Π½Π°ΡƒΠΊΠΎΠ²ΠΎ-ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° конфСрСнція

    No full text
    Π•ΠΊΠΎΠ½ΠΎΠΌΡ–Ρ‡Π½Ρ– Ρ‚Π° Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Π° (Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ) Ρ” ΠΊΠ»ΡŽΡ‡Π΅ΠΌ Π΄ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ провСдСння ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΈΡ… процСсів. Для досягнСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— продуктивності ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Π° Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ Π²ΠΎΠ»ΠΎΠ΄Ρ–Ρ‚ΠΈ знаннями Π½Π΅ Ρ‚Ρ–Π»ΡŒΠΊΠΈ ΠΏΡ€ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ ΠΉΠΎΠ³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚Ρ–, Π° ΠΉ Ρ€ΠΎΠ·ΡƒΠΌΡ–Ρ‚ΠΈ, Π² якому місці Ρ– Π² який спосіб Ρ—Ρ… Ρ‚Ρ€Π΅Π±Π° ΠΎΠ±'Ρ”Π΄Π½Π°Ρ‚ΠΈ Π² ΠΎΠ΄Π½Π΅ Ρ†Ρ–Π»Π΅, Ρ‰ΠΎΠ± ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π±Ρ–Π»ΡŒΡˆ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ– сСлСктивні ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρ– Ρ†Π΅Π½Ρ‚Ρ€ΠΈ. На ΠΎΠΊΡ€Π΅ΠΌΠΈΡ… ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π°Ρ… (ізомСризація, ΠΊΠ°Ρ‚Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½ΠΈΠΉ ΠΊΡ€Π΅ΠΊΡ–Π½Π³, асимСтричнС гідрування, конвСрсія Π΅Ρ‚Π°Π½ΠΎΠ»Ρƒ) Π±ΡƒΠ΄Π΅ прСдставлСна концСпція ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚Ρ– ΠΊΠ°Ρ‚Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Π° як Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΡˆΠ»ΡΡ…Ρƒ підвищСння інтСнсифікації процСсів.The economic and environmental performance of a catalyst (activity, selectivity, stability) is the key element determining the effectivity of a catalytic process. To achieve optimal catalyst performance, it is necessary to understand not only the nature of its functionalities, but also to knew where and how they should be combined into a single whole in order to obtain more active and selective catalytic sites. Taking selected examples (isomerization, catalytic cracking, asymmetric hydrogenation, ethanol conversion), the concept of catalyst multifunctionality as an effective way to increase the intensification of processes will be discussed.ЭкономичСскиС ΠΈ экологичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° (Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ) ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠ»ΡŽΡ‡ΠΎΠΌ ΠΊ эффСктивному ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡŽ каталитичСских процСссов. Для достиТСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Π»Π°Π΄Π΅Ρ‚ΡŒ знаниями Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ Π΅Π³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π½ΠΎ ΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, Π² ΠΊΠ°ΠΊΠΎΠΌ мСстС ΠΈ ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΈΡ… Π½Π°Π΄ΠΎ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ Π² ΠΎΠ΄Π½ΠΎ Ρ†Π΅Π»ΠΎΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΈ сСлСктивныС каталитичСскиС Ρ†Π΅Π½Ρ‚Ρ€Ρ‹. На ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… (изомСризация, каталитичСский ΠΊΡ€Π΅ΠΊΠΈΠ½Π³, асиммСтричСскоС Π³ΠΈΠ΄Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, конвСрсия этанола) Π±ΡƒΠ΄Π΅Ρ‚ прСдставлСна концСпция ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° ΠΊΠ°ΠΊ эффСктивного ΠΏΡƒΡ‚ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ интСнсификации процСссов

    МодСлювання сумісної Π³Π°Π·ΠΎΠ²ΠΎΡ— адсорбції Π½Π° ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΡŒΠΎΠΌΡƒ Ρ‚Π° ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠΌΡƒ Ρ†Π΅ΠΎΠ»Ρ–Ρ‚Π°Ρ…

    No full text
    Adsorption is of great importance. The unique advantage of adsorption over other separation methods is the higher selectivity that can be achieved by adsorbents. In addition, adsorption phenomena play a vital role in many solid-state reactions and biological mechanisms. In this work, the adsorption process of CO2 on the clinoptilolite (Skorynskoho field, Transcarpathian region, Ukraine) and SO2, NO, and CO2 adsorption on K2CO3-modified – Ξ³ -alumina in a fixed-bed reactor were theoretical studied and simulated by computer-mathematic methods. The developed mathematical model based on the mass balance in gas and solid phase, the experimental saturation capacities, considering the activity of the adsorbent with respect to the gas by variable coefficients. The model presented by aΒ normal linear system of differential equations with variable coefficients, it was solved by Taylor collocation method. The simulation shows that the data obtained by theoretical study are in agreement with data obtained in the simulation. According to Fisher Criterion the mathematic model adequate in 90 % for modified zeolite and in 75 % for natural zeolite, it can be explained by unordered structure of the natural zeolite. It follows that the offered model adequately describes the dynamics simultaneous adsorption of gases over zeolites. Thus even with a large number of simplifications and assumptions, it is possible to construct efficient mathematical model that can be used in exhaust system. The results indicate that, there is great sense to conduct further researches and simulations to reach the industrial level.Π Π°Π±ΠΎΡ‚Π° посвящСна тСорСтичСскому ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ процСсса адсорбции БО2 Π½Π° ΠΊΠ»ΠΈΠ½ΠΎΠΏΡ‚ΠΈΠ»ΠΎΠ»ΠΈΡ‚Π΅ (БкоринскоС мСстороТдСниС, Закарпатская ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, Π£ΠΊΡ€Π°ΠΈΠ½Π°) ΠΈ процСсса адсорбции SO2, NO, ΠΈ CO2 Π½Π° K2CO3-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ - Ξ³-оксид алюминия. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ модСль Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ совмСстной Π³Π°Π·ΠΎΠ²ΠΎΠΉ адсорбции построСна Π½Π° основС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ баланса Π² Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΠΈ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ Ρ„Π°Π·Π΅ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ адсорбСнта ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π³Π°Π·Ρƒ ΠΏΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ коэффициСнтами.Β Π ΠΎΠ±ΠΎΡ‚Π° присвячСна Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ Π²ΠΈΠ²Ρ‡Π΅Π½Π½ΡŽ Ρ‚Π° модСлюванню процСсу адсорбції БО2 Π½Π° ΠΊΠ»Ρ–Π½ΠΎΠΏΡ‚ΠΈΠ»ΠΎΠ»Ρ–Ρ‚Ρ– (Π‘ΠΊΠΎΡ€ΠΈΠ½ΡΡŒΠΊΠ΅ Ρ€ΠΎΠ΄ΠΎΠ²ΠΈΡ‰Π΅, Π—Π°ΠΊΠ°Ρ€ΠΏΠ°Ρ‚ΡΡŒΠΊΠ° ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, Π£ΠΊΡ€Π°Ρ—Π½Π°) Ρ‚Π° процСсу адсорбції SO2, NO, Ρ– CO2 Π½Π° K2CO3-ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠΌΡƒ - Ξ³-оксид Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π° модСль Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ сумісної Π³Π°Π·ΠΎΠ²ΠΎΡ— адсорбції ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½Π° Π½Π° основі ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ балансу Π² Π³Π°Π·ΠΎΠ²Ρ–ΠΉ Ρ‚Π° Ρ‚Π²Π΅Ρ€Π΄Ρ–ΠΉ Ρ„Π°Π·Ρ– Π· урахуванням Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ адсорбСнту ΠΏΠΎ Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡŽ Π΄ΠΎ Π³Π°Π·Ρƒ ΠΏΠΎ Π·ΠΌΡ–Π½Π½ΠΈΠΌΠΈ ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π°ΠΌΠΈ.

    Catalysis on Zeolites and Zeolite-like Materials

    No full text
    When the Swedish mineralogist Axel F [...

    Studies on the Binary MgO/SiO2 Mixed Oxide Catalysts for the Conversion of Ethanol to 1,3-Butadiene

    No full text
    The demand for 1,3-butadiene, one of the most important raw materials in the rubber industry, is constantly increasing. The Lebedev process is a classical method of producing 1,3-butadiene from ethanol, which is to be optimized with regard to the mixed oxide catalysts used. In this work, the binary MgO/SiO2 solid system was tested with regard to its optimum chemical composition for the catalytic conversion of ethanol to 1,3-butadiene. Furthermore, novel mesoporous mixed oxides were prepared to investigate their textural, structural, and surface chemical properties as well as the catalytic activity. Nitrogen physisorption, scanning electron microscopy (SEM), and temperature-programmed ammonia desorption (NH3-TPD) measurements were carried out and evaluated. It was shown that the optimum yield of 1,3-butadiene is achieved by using MgO/SiO2 mixed oxide catalysts with 85–95 mol% MgO and not, as suggested by Lebedev, with 75 mol% MgO. The NH3-TPD measurements revealed that the maximum acid-site density is achieved with an equimolar up to magnesium-rich composition. During the synthesis of binary MgO/SiO2 solid systems based on mesoporous MgO, a thermally stable and ordered structure was formed in the autoclave, depending on the carbonate used and on the duration of the treatment
    • …
    corecore