33 research outputs found
Active Sticks: a New Dimension in Controller Design
A smart stick controller was built which actively produces a force to interact with the subject's hand and to aid in tracking. When the human tracks in this situation, the man-machine system can be viewed as the combination of two closed loop feedback paths. The inner loop occurs as a result of a tactile information channel effecting the man-controller interaction through force with this stick in the active mode (the stick generates a force) and the passive mode (the stick not generating a force) are reported. The most noteworthy observation is a significant increase in apparent neuromotor bandwidth and consequently better tracking performance
Effects of Control Stick Parameters on Human Controller Response
A fixed base laboratory tracking study was conducted to determine the effects of stick displacement and stick force characteristics on human tracking performance. Three different levels of control stick force/displacement characteristics and stick electrical gain were varied to observe their influence on RMS (Root Mean Square) tracking error and RMS control activity (stick output). The results indicated that both RMS tracking error and RMS control activity were influenced by the three different levels of control stick force/displacement characteristics and stick electrical gain. The human neuromotor time constant was affected by the electrical control gain of the stick while the spring stiffness of the stick influenced the time delay characteristics of the human response behavior
A study on task difficulty and acceleration stress
The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty
A method motion simulator design based on modeling characteristics of the human operator
A design criteria is obtained to compare two simulators and evaluate their equivalence or credibility. In the subsequent analysis the comparison of two simulators can be considered as the same problem as the comparison of a real world situation and a simulation's representation of this real world situation. The design criteria developed involves modeling of the human operator and defining simple parameters to describe his behavior in the simulator and in the real world situation. In the process of obtaining human operator parameters to define characteristics to evaluate simulators, measures are also obtained on these human operator characteristics which can be used to describe the human as an information processor and controller. First, a study is conducted on the simulator design problem in such a manner that this modeling approach can be used to develop a criteria for the comparison of two simulators
A relationship between eye movement patterns and performance in a precognitive tracking task
Eye movements made by various subjects in the performance of a precognitive tracking task are studied. The tracking task persented by an antiaircraft artillery (AAA) simulator has an input forcing function represented by a deterministic aircraft fly-by. The performance of subjects is ranked by two metrics. Good, mediocre, and poor trackers are selected for analysis based on performance during the difficult segment of the tracking task and over replications. Using phase planes to characterize both the eye movement patterns and the displayed error signal, a simple metric is developed to study these patterns. Two characterizations of eye movement strategies are defined and quantified. Using these two types of eye strategies, two conclusions are obtained about good, mediocre, and poor trackers. First, the eye tracker who used a fixed strategy will consistently perform better. Secondly, the best fixed strategy is defined as a Crosshair Fixator
Using model order tests to determine sensory inputs in a motion study
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs
The effects of multiple aerospace environmental stressors on human performance
An extended Fitt's law paradigm reaction time (RT) task was used to evaluate the effects of acceleration on human performance in the Dynamic Environment Simulator (DES) at Armstrong Laboratory, Wright-Patterson AFB, Ohio. This effort was combined with an evaluation of the standard CSU-13 P anti-gravity suit versus three configurations of a 'retrograde inflation anti-G suit'. Results indicated that RT and error rates increased 17 percent and 14 percent respectively from baseline to the end of the simulated aerial combat maneuver and that the most common error was pressing too few buttons
Biomimetic model of skeletal muscle isometric contraction: I. an energetic–viscoelastic model for the skeletal muscle isometric force twitch
This paper describes a revision of the Hill-type muscle model so that it will describe the chemo-mechanical energy conversion process (energetic) and the internal-element sti2ness variation (viscoelastic) during a skeletal muscle isometric force twitch contraction. The derivation of this energetic–viscoelastic model is described by a 3rst-order linear ordinary di2erential equation with constant energetic and viscoelastic coe5cients. The model has been implemented as part of a biomimetic model, which describes the excitation–contraction coupling necessary to drive the energetic–viscoelastic model. Finally, the energetic–viscoelastic model is validated by comparing its isometric force–time pro3le with that of various muscles reported in the literature
Action ability modulates time‑to‑collision judgments
Time-to-collision (TTC) underestimation has been interpreted as an adaptive response that allows observers to have more time to engage in a defensive behaviour. This bias seems, therefore, strongly linked to action preparation. There is evidence that the observer’s physical fitness modulates the underestimation effect so that people who need more time to react (i.e. those with less physical fitness) show a stronger underestimation effect. Here we investigated whether this bias is influenced by the momentary action capability of the observers. In the first experiment, participants estimated the time-to-collision of threatening or non-threatening stimuli while being mildly immobilized (with a chin rest) or while standing freely. Having reduced the possibility of movement led participants to show more underestimation of the approaching stimuli. However, this effect was not stronger for threatening relative to non-threatening stimuli. The effect of the action capability found in the first experiment could be interpreted as an expansion of peripersonal space (PPS). In the second experiment, we thus investigated the generality of this effect using an established paradigm to measure the size of peripersonal space. Participants bisected lines from different distances while in the chin rest or standing freely. The results replicated the classic left-to-right gradient in lateral spatial attention with increasing viewing distance, but no effect of immobilization was found. The manipulation of the momentary action capability of the observers influenced the participants’ performance in the TTC task but not in the line bisection task. These results are discussed in relation to the different functions of PPS