100 research outputs found

    Recent advances in β-thalassemias

    Get PDF
    β-thalassemias are heterogeneous hereditary anemias characterized by a reduced output of β-globin chains. The disease is most frequent in the temperate regions of the world, where it represents an important health problem. In the last decades, several programs, aimed at controlling the birth rate of thalassemia newborns by screening and prenatal diagnosis of populations with high risk of β-thalassemia, have been successful accomplished. Bone marrow transplantation has offered a definitive cure for the fraction of patients with available donors. In the same time, steady improvements were made in the traditional clinical management of β-thalassemia patients. The introduction of the oral iron chelators deferiprone that preferentially chelates hearth iron and the development of novel NMR diagnostic methods has led to reduced morbility, increased survival and improved quality of life. More recently, major advances have being made in the discovery of critical modifier genes, such as Myb and especially BCL11A (B cell lymphoma 11A), a master regulator of HbF (fetal hemoglobin) and hemoglobin switching. Polimorphysms of BCL11A, Myb and γ-globin genes account for most of the variability in the clinical phenotypes in β-thalassemia and sickle cell anemia patients. Finally, the year 2010 has brought in the first successful experiment of gene therapy in a β-thalassemia patient, opening up the perspective of a generalized cure for all β- thalassemia patients

    Combined therapy with deferiprone and desferrioxamine in thalassemia major

    Get PDF
    Effective and convenient iron chelation remains one of the main targets of clinical management of thalassemia major. The combined treatment with desferrioxamine and deferiprone could have an increased chelation efficacy and sometimes allow drug doses and toxicity to be reduced and the number of days of desferrioxamine infusion to be decreased, improving compliance and quality of life

    A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron.

    Get PDF
    Background Hepcidin plays a key role in body iron metabolism by preventing the release of iron from macrophages and intestinal cells. Defective hepcidin synthesis causes iron loading, while overproduction results in defective reticuloendothelial iron release and iron absorption. Design and Methods We studied a Sardinian family in which microcytic anemia due to defective iron absorption and utilization is inherited as a recessive character. Five members showed iron deficiency anemia that was not responsive to oral iron and only partially responsive to parenteral iron administration. To investigate the involvement of known genes implicated in iron metabolism we carried out linkage analysis with microsatellite markers mapping close to these genes. Afterwards, a genome-wide search was performed. Results No linkage was found between the phenotype of the patients and several known human genes involved in iron metabolism ( DMT1, TF, TFRC, ZIRTL, HAMP, HJV ). Genome-wide scanning by microsatellites and single nucleotide polymorphisms showed a multipoint LOD score of 5.6 on chromosome 22q12.3–13.1, where the matriptase-2 (also known as transmembrane protease, serine 6 or TMPRSS6 ) gene is located. Its murine counterpart ( Tmprss6 ) has recently been found to be an essential component of a pathway that detects iron deficiency and suppresses hepcidin production. Sequencing analysis of TMPRSS6 revealed a homozygous causal mutation, predicting a splicing error and a truncated TMPRSS6 protein in affected members. Homozygous subjects had inappropriately elevated levels of serum and urinary hepcidin. Conclusions The findings of this study suggest that the observed TMPRSS6 mutation leads to overproduction of hepcidin and, in turn, to defective iron absorption and utilization. More generally, they confirm in humans the inhibitory effect of matriptase-2 on hepcidin synthesis already demonstrated in mice

    Structural and Functional Characterization of a New Double Variant Haemoglobin (HbG-Philadelphia/Duarte α268Asn→Lysβ262Ala→Pro)

    Get PDF
    We report the first case of cosegregation of two haemoglobins (Hbs): HbG-Philadelphia [α68(E17)Asn → Lys] and HbDuarte [β62(E6)Ala → Pro]. The proband is a young patient heterozygous also for β°-thalassaemia. We detected exclusively two haemoglobin variants: HbDuarte and HbG-Philadelphia/Duarte. Functional study of the new double variant HbG-Philadelphia/Duarte exhibited an increase in oxygen affinity, with a slight decrease of cooperativity and Bohr effect. This functional behaviour is attributed to β62Ala → Pro instead of α68Asn → Lys substitution. Indeed, HbG-Philadelphia isolated in our laboratory from blood cells donor carrier for this variant is not affected by any functional modification, whereas purified Hb Duarte showed functional properties very similar to the double variant. NMR and MD simulation studies confirmed that the presence of Pro instead of Ala at the β62 position produces displacement of the E helix and modifications of the tertiary structure. The substitution α68(E17)Asn → Lys does not cause significant structural and dynamical modifications of the protein. A possible structure-based rational of substitution effects is suggested

    An evaluation of the Diamat HPLC analyser for simultaneous determination of haemoglobins A2 and F

    Get PDF
    The authors describe a modification of the instrumental parameters of the Diamat fully automated HPLC system for Hb A2 assay (Bio-Rad Laboratories, Milan, Italy) in order to obtain simultaneous determination of Hb A2 and Hb F

    Effects of combined deferiprone with deferoxamine on right ventricular function in thalassaemia major

    Get PDF
    BACKGROUND: Combination therapy with deferoxamine and oral deferiprone is superior to deferoxamine alone in removing cardiac iron and improving left ventricular ejection fraction (LVEF). The right ventricle (RV) is also affected by the toxic effects of iron and may cause additional cardiovascular perturbation. We assessed the effects of combination therapy on the RV in thalassaemia major (TM) using cardiovascular magnetic resonance (CMR). METHODS: We retrieved imaging data from 2 treatment trials and re-analyzed the data for the RV responses: Trial 1 was a randomized controlled trial (RCT) of 65 TM patients with mild-moderate cardiac siderosis receiving combination therapy or deferoxamine with placebo; Trial 2 was an open label longitudinal trial assessing combination therapy in 15 TM patients with severe iron loading. RESULTS: In the RCT, combination therapy with deferoxamine and deferiprone was superior to deferoxamine alone for improving RVEF (3.6 vs 0.7%, p = 0.02). The increase in RVEF was greater with lower baseline T2* 8-12 ms (4.7 vs 0.5%, p = 0.01) than with T2* 12-20 ms (2.2 vs 0.8%, p = 0.47). In patients with severe cardiac siderosis, substantial improvement in RVEF was seen with open-label combination therapy (10.5% ± 5.6%, p < 0.01). CONCLUSIONS: In the RCT of mild to moderate cardiac iron loading, combination treatment improved RV function significantly more than deferoxamine alone. Combination treatment also improved RV function in severe cardiac siderosis. Therefore adding deferiprone to deferoxamine has beneficial effects on both RV and LV function in TM patients with cardiac siderosis

    Combined chelation therapy in thalassemia major for the treatment of severe myocardial siderosis with left ventricular dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In thalassemia major (TM), severe cardiac siderosis can be treated by continuous parenteral deferoxamine, but poor compliance, complications and deaths occur. Combined chelation therapy with deferiprone and deferoxamine is effective for moderate myocardial siderosis, but has not been prospectively examined in severe myocardial siderosis.</p> <p>Methods</p> <p>T2* cardiovascular magnetic resonance (CMR) was performed in 167 TM patients receiving standard subcutaneous deferoxamine monotherapy, and 22 had severe myocardial siderosis (T2* < 8 ms) with impaired left ventricular (LV) function. Fifteen of these patients received combination therapy with subcutaneous deferoxamine and oral deferiprone with CMR follow-up.</p> <p>Results</p> <p>At baseline, deferoxamine was prescribed at 38 ± 10.2 mg/kg for 5.3 days/week, and deferiprone at 73.9 ± 4.0 mg/kg/day. All patients continued both deferiprone and deferoxamine for 12 months. There were no deaths or new cardiovascular complications. The myocardial T2* improved (5.7 ± 0.98 ms to 7.9 ± 2.47 ms; p = 0.010), with concomitant improvement in LV ejection fraction (51.2 ± 10.9% to 65.6 ± 6.7%; p < 0.001). Serum ferritin improved from 2057 (CV 7.6%) to 666 (CV 13.2%) μg/L (p < 0.001), and liver iron improved (liver T2*: 3.7 ± 2.9 ms to 10.8 ± 7.3 ms; p = 0.006).</p> <p>Conclusion</p> <p>In patients with severe myocardial siderosis and impaired LV function, combined chelation therapy with subcutaneous deferoxamine and oral deferiprone reduces myocardial iron and improves cardiac function. This treatment is considerably less onerous for the patient than conventional high dose continuous subcutaneous or intravenous deferoxamine monotherapy, and may be considered as an alternative. Very prolonged tailored treatment with iron chelation is necessary to clear myocardial iron, and alterations in chelation must be guided by repeated myocardial T2* scans.</p> <p>Trial registration</p> <p>This trial is registered as NCT00103753</p

    Effect of deferiprone or deferoxamine on right ventricular function in thalassemia major patients with myocardial iron overload

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thalassaemia major (TM) patients need regular blood transfusions that lead to accumulation of iron and death from heart failure. Deferiprone has been reported to be superior to deferoxamine for the removal of cardiac iron and improvement in left ventricular (LV) function but little is known of their relative effects on the right ventricle (RV), which is being increasingly recognised as an important prognostic factor in cardiomyopathy. Therefore data from a prospective randomised controlled trial (RCT) comparing these chelators was retrospectively analysed to assess the RV responses to these drugs.</p> <p>Methods</p> <p>In the RCT, 61 TM patients were randomised to receive either deferiprone or deferoxamine monotherapy, and CMR scans for T2* and cardiac function were obtained. Data were re-analysed for RV volumes and function at baseline, and after 6 and 12 months of treatment.</p> <p>Results</p> <p>From baseline to 12 months, deferiprone reduced RV end systolic volume (ESV) from 37.7 to 34.2 mL (p = 0.008), whilst RV ejection fraction (EF) increased from 69.6 to 72.2% (p = 0.001). This was associated with a 27% increase in T2* (p < 0.001) and 3.1% increase in LVEF (p < 0.001). By contrast, deferoxamine showed no change in RVESV (38.1 to 39.1 mL, p = 0.38), or RVEF (70.0 to 69.9%, p = 0.93) whereas the T2* increased by 13% (p < 0.001), but with no change in LVEF (0.32%; p = 0.66). Analysis of between drugs treatment effects, showed significant improvements favouring deferiprone with a mean effect on RVESV of -1.82 mL (p = 0.014) and 1.16% for RVEF (p = 0.009). Using regression analysis the improvement in RVEF at 12 months was shown to be greater in patients with lower baseline EF values (p < 0.001), with a significant difference in RVEF of 3.5% favouring deferiprone over deferoxamine (p = 0.012).</p> <p>Conclusion</p> <p>In this retrospective analysis of a prospective RCT, deferiprone monotherapy was superior to deferoxamine for improvement in RVEF and end-systolic volume. This improvement in the RV volumes and function may contribute to the improved cardiac outcomes seen with deferiprone.</p
    corecore