8 research outputs found

    Facile synthesis of high-performance indium nanocrystals for selective CO2-to-formate electroreduction

    Get PDF
    Selective electrocatalytic reduction of CO2 to formate has received increasing interest for CO2 conversion and utilization. Yet, the CO2 reduction process still faces major challenges, partly due to the lack of cost-effective, highly active, selective and stable electrocatalysts. Here, we report a mesoporous indium (mp-In) electrocatalyst composed of nanobelts synthesized via a simple solution-based approach for selective CO2 reduction to formate. The mp-In nanocrystals provide enlarged surface areas, abundant surface active sites and edge/low-coordinated sites. Such advantages afford the mp-In with an outstanding electrocatalytic performance for the CO2-to-formate conversion. A high formate selectivity, with a Faradaic efficiency (FE) of >90% was achieved over a potential of −0.95 V to −1.1 V (vs VRHE). The mp-In catalyst showed excellent durability, reflected by the stable formate selectivity and current density over a 24 h reaction period. Density functional theory (DFT) calculations reveal that the stabilization of the intermediate OCHO* on the In-plane surfaces is energetically feasible, further elucidating the origin of its enhanced CO2-to-formate activity and selectivity. This work may offer valuable insights for the facile fabrication of porous hierarchical nanostructures for electrocatalytic and selective reduction of CO2.</p

    Recent advances in plasma modification of 2D transition metal dichalcogenides

    No full text
    Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials have recently attracted great interest because of their tantalising prospects for a broad range of applications including electronics, optoelectronics, and energy storage. Unlike bulk materials, the device performance of atomically thin 2D materials is determined by the interface, thickness and defects. Plasma processing is very effective for diverse modifications of nanoscale 2D TMDC materials, owing to its uniquely controllable, effective processes and energy efficiency. Herein, we critically discuss selected recent advances in plasma modification of 2D TMDC materials and their optical and electronic (including optoelectronic) properties of relevance to applications in hydrogen production, gas sensing and energy storage devices. Challenges and future research opportunities in the relevant research field are presented. This review contributes to directing future advances of plasma processing of TMDC materials for targeted applications.</p

    Invivopen: A novel plasma source for in vivo cancer treatment

    No full text
    Background: With the anti-cancer efficacies of cold atmospheric plasma being increasingly recognized in vitro, a demand on creating an effective tool feasible for in vivo animal treatment has emerged. Methods: Through the use of co-axial needles with different calibers in diameter, we designed a novel in situ ejection source of cold atmospheric plasma, namely invivoPen, for animal experiments. It punches just a single pinhole that could considerably ease the complexity of operating with small animals such as mouse. Results: We showed that invivoPen could deliver similar efficacies as plasma activated medium with reduced cost in suppressing cell proliferation and migration as well as potentially boosting the viabilities of mice receiving invivoPen treatment. Blood test, renal and liver functionalities tests all suggest that physical plasma could effectively return tumor-carrying mice to the healthy state without harm to body conditions, and invivoPen slightly outweighs PAM in boosting animal immunity and reducing inflammation. Conclusion: Our study contributes to the community in providing a minimal invasive in situ plasma source, having partly explained the efficacies of cold atmospheric plasma in treating triple negative breast cancers, and proposing the potential synergies between physical plasma and conventional drugs for cancer treatment.</p

    Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High-Performance CO2-to-Formate Electrocatalytic Conversion

    No full text
    Ever-increasing emissions of anthropogenic carbon dioxide (CO2) cause global environmental and climate challenges. Inspired by biological photosynthesis, developing effective strategies NeuNlto up-cycle CO2 into high-value organics is crucial. Electrochemical CO2 reduction reaction (CO2RR) is highly promising to convert CO2 into economically viable carbon-based chemicals or fuels under mild process conditions. Herein, mesoporous indium supported on multi-walled carbon nanotubes (mp-In@MWCNTs) is synthesized via a facile wet chemical method. The mp-In@MWCNTs electrocatalysts exhibit high CO2RR performance in reducing CO2 into formate. An outstanding activity (current density −78.5 mA cm−2), high conversion efficiency (Faradaic efficiency of formate over 90%), and persistent stability (~30 h) for selective CO2-to-formate conversion are observed. The outstanding CO2RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network, which promote the adsorption and desorption of reactants and intermediates while improving electron transfer. These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO2 conversion.</p

    Prussian Blue Analogue Nanoenzymes Mitigate Oxidative Stress and Boost Bio-Fermentation

    No full text
    Oxidative stress in cells caused by the accumulation of reactive oxygen species (ROS) is a common cause of cell function degeneration, cell death and various diseases. Efficient, robust and inexpensive nanoparticles (nanoenzymes) capable of scavenging/detoxifying ROS even in harsh environments are attracting strong interest. Prussian blue analogues (PBAs), a prominent group of metalorganic nanoparticles (NPs) with the same cyanometalate structure as the traditional and commonly used Prussian blue (PB), have long been envisaged to mimic enzyme activities for ROS scavenging. However, their biological toxicity, especially potential effects on living beings during practical application, has not yet been fully investigated. Here we reveal the enzyme-like activity of FeCo-PBA NPs, and for the first time investigate the effects of FeCo-PBA on cell viability and growth. We elucidate the effect of the nanoenzyme on the ethanol-production efficacy of a typical model organism, the engineered industrial strain Saccharomyces cerevisiae. We further demonstrate that FeCo-PBA NPs have almost no cytotoxicity on the cells over a broad dosage range (0-100 ÎŒg mL -1), while clearly boosting the yeast fermentation efficiency by mitigating oxidative stress. Atmospheric pressure cold plasma (APCP) pretreatment is used as a multifunctional environmental stress produced by the plasma reactive species. While the plasma enhances the cellular uptake of NPs, FeCo-PBA NPs protect the cells from the oxidative stress induced by both the plasma and the fermentation processes. This synergistic effect leads to higher secondary metabolite yields and energy production. Collectively, this study confirms the positive effects of PBA nanoparticles in living cells through ROS scavenging, thus potentially opening new ways to control the cellular machinery in future nano-biotechnology and nano-biomedical applications. </p
    corecore