68 research outputs found

    The Classical Sumudu Transform and its q-Image of the Most Generalized Hypergeometric and Wright-Type Hypergeometric Functions

    Get PDF
    The q- Calculus has served as a bridge between mathematics and physics, particularly in case of quantum physics. The q-generalizations of mathematical concepts like Laplace, Fourier and Sumudu transforms, Hypergeometric functions etc. can be advantageously used in solution of various problems arising in the field of physical and engineering sciences. The q-Sumudu transform, the q-image of classical Sumudu transform is the theoretical dual of the q-Laplace transform. In view of this, the present paper deals with some of the important applications of classical Sumudu and q-Sumudu transform of generalized hypergeometric function and Wright-type hypergeometric function. The results have been presented in terms of well-known Fox’s H-function. Some special cases have also been discussed

    B cell–deficient NOD.H-2h4 mice have CD4+CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis

    Get PDF
    Wild-type (WT) NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) when given 0.05% NaI in their drinking water, whereas B cell–deficient NOD.H-2h4 mice are SAT resistant. To test the hypothesis that resistance of B cell–deficient mice to SAT was due to the activity of regulatory CD4+CD25+ T (T reg) cells activated if autoantigen was initially presented on non–B cells, CD25+ T reg cells were transiently depleted in vivo using anti-CD25. B cell–deficient NOD.H-2h4 mice given three weekly injections of anti-CD25 developed SAT 8 wk after NaI water. Thyroid lesions were similar to those in WT mice except there were no B cells in thyroid infiltrates. WT and B cell–deficient mice had similar numbers of CD4+CD25+Foxp3+ cells. Mice with transgenic nitrophenyl-specific B cells unable to secrete immunoglobulin were also resistant to SAT, and transient depletion of T reg cells resulted in severe SAT with both T and B cells in thyroid infiltrates. T reg cells that inhibit SAT were eliminated by day 3 thymectomy, indicating they belong to the subset of naturally occurring T reg cells. However, T reg cell depletion did not increase SAT severity in WT mice, suggesting that T reg cells may be nonfunctional when effector T cells are activated; i.e., by autoantigen-presenting B cells

    Innocuous IFNγ induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production

    Get PDF
    The role of Th17 cells in type I diabetes (TID) remains largely unknown. Glutamic acid decarboxylase (GAD) sequence 206–220 (designated GAD2) represents a late-stage epitope, but GAD2-specific T cell receptor transgenic T cells producing interferon γ (IFNγ) protect against passive TID. Because IFNγ is known to inhibit Th17 cells, effective presentation of GAD2 peptide under noninflammatory conditions may protect against TID at advanced disease stages. To test this premise, GAD2 was genetically incorporated into an immunoglobulin (Ig) molecule to magnify tolerance, and the resulting Ig-GAD2 was tested against TID at different stages of the disease. The findings indicated that Ig-GAD2 could not prevent TID at the preinsulitis phase, but delayed TID at the insulitis stage. More importantly, Ig-GAD2 sustained both clearance of pancreatic cell infiltration and β-cell division and restored normoglycemia when given to hyperglycemic mice at the prediabetic stage. This was dependent on the induction of splenic IFNγ that inhibited interleukin (IL)-17 production. In fact, neutralization of IFNγ led to a significant increase in the frequency of Th17 cells, and the treatment became nonprotective. Thus, IFNγ induced by an adjuvant free antigen, contrary to its usual inflammatory function, restores normoglycemia, most likely by localized bystander suppression of pathogenic IL-17–producing cells

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030

    The impact of different fertiliser management options and cultivars on nitrogen use efficiency and yield for rice cropping in the Indo-Gangetic Plain: two seasons of methane, nitrous oxide and ammonia emissions

    Get PDF
    This study presents detailed crop and gas flux data from two years of rice production at the experimental farm of the ICAR-Indian Agricultural Research Institute, New Delhi, India. In comparing 4 nitrogen (N) fertiliser regimes across 4 rice cultivars (CRD 310, IR-64, MTU 1010, P-44), we have added to growing evidence of the environmental costs of rice production in the region. The study shows that rice cultivar can impact yields of both grain, and total biomass produced in given circumstances, with the CRD 310 cultivar showing consistently high nitrogen use efficiency (NUE) for total biomass compared with other tested varieties, but not necessarily with the highest grain yield, which was P-44 in this experiment. While NUE of the rice did vary depending on experimental treatments (ranging from 41% to 73%), 73%), this did not translate directly into the reduction of emissions of ammonia (NH3) and nitrous oxide (N2O). Emissions were relatively similar across the different rice cultivars regardless of NUE. Conversely, agronomic practices that reduced total N losses were associated with higher yield. In terms of fertiliser application, the outstanding impact was of the very high methane (CH4) emissions as a result of incorporating farmyard manure (FYM) into rice paddies, which dominated the overall effect on global warming potential. While the use of nitrification and urease inhibiting substances decreased N2O emissions overall, NH3 emissions were relatively unaffected (or slightly higher). Overall, the greatest reduction in greenhouse gas (GHG) emissions came from reducing irrigation water added to the fields, resulting in higher N2O, but significantly less CH4 emissions, reducing net GHG emission compared with continuous flooding. Overall, genetic differences generated more variation in yield and NUE than agronomic management (excluding controls), whereas agronomy generated larger differences than genetics concerning gaseous losses. This study suggests that a mixed approach needs to be applied when attempting to reduce pollution and global warming potential from rice production and potential pollution swapping and synergies need to be considered. Finding the right balance of rice cultivar, irrigation technique and fertiliser type could significantly reduce emissions, while getting it wrong can result in considerably poorer yields and higher pollution

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    © 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    Karakterizacija solvatomorfa metotreksata pomoću termoanalitičkih i drugih metoda

    Get PDF
    Identification and characterization of different forms of methotrexate were carried out by crystallization from different solvents. Five different forms of the drug were obtained. Appearance of a desolvation endotherm in the DSC accompanied by mass loss in TGA for forms I, II, IV and V showed these forms to be acetonitrile solvate hydrate (form I), trihydrate (forms II and IV) and dimethylformamide solvate (form V), respectively. However, the desolvation peak was absent in form III (obtained from methanol) indicating the absence of any solvent of crystallization. This form was found to be partially crystalline by its XRPD pattern. Solution calorimetry was further used to differentiate between the forms as they differ in lattice energy, resulting in different enthalpies of solution. The dissolution and solubility profiles were correlated with the enthalpy of solution and subsequently with crystallinity of all the forms; the least endothermic form (form III) had the highest dissolution rate.U radu je provedena identifikacija i karakterizacija pet različitih formi metotreksata dobivenih kristalizacijom iz različitih otapala. Desolvatacijska izoterma u DSC popraćena gubitkom mase u TGA za forme I, II, IV i V ukazuje da su te forme solvati s acetonitrilom: hidrat (forma I), trihidrat (forma II i IV) i solvat s dimetilformamidom (forma V). Međutim, desolvatacijski pik je odsutan u formi III (dobivenoj iz metanola) što ukazuje na odsutnost otapala u kristalnoj formi. Ta forma je parcijalno kristalna i pokazuje odgovarajući XRPD uzorak. Energija kristalne ćelije je za različite forme različita, što ima za posljedicu različite entalpije otapanja te omogućava primjenu kalorimetrije otopine za diferencijaciju formi. Topljivost je korelirana s entalpijom otopine i kristaliničnosti svih formi. Najmanje endotermna forma (forma III) je najbolje topljiva

    2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Get PDF
    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections

    Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    Get PDF
    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty
    corecore