819 research outputs found

    Activin a protects midbrain neurons in the 6-hydroxydopamine mouse model of Parkinson's disease

    Full text link
    © 2015 Stayte et al. Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naive mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain

    Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia.

    Full text link
    L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson's disease (PD), l-dopa. Here we investigate the effect of HU-308, a cannabinoid CB2 receptor agonist, on LIDs. Utilizing a mouse model of PD and LIDs, induced by 6-OHDA and subsequent l-dopa treatment, we show that HU-308 reduced LIDs as effectively as amantadine, the current frontline treatment. Furthermore, treatment with HU-308 plus amantadine resulted in a greater anti-dyskinetic effect than maximally achieved with HU-308 alone, potentially suggesting a synergistic effect of these two treatments. Lastly, we demonstrated that treatment with HU-308 and amantadine either alone, or in combination, decreased striatal neuroinflammation, a mechanism which has been suggested to contribute to LIDs. Taken together, our results suggest pharmacological treatments with CB2 agonists merit further investigation as therapies for LIDs in PD patients. Furthermore, since CB2 receptors are thought to be primarily expressed on, and signal through, glia, our data provide weight to suggestion that neuroinflammation, or more specifically, altered glial function, plays a role in development of LIDs

    Ornithine uptake and the modulation of drug sensitivity in <i>Trypanosoma brucei</i>

    Get PDF
    Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.—Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei

    Activin A inhibits MPTP and LPS-induced increases in inflammatory cell populations and loss of dopamine neurons in the mouse midbrain in Vivo

    Full text link
    © 2017 Stayte et al. Parkinson's disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson's disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson's disease

    The Structure of Polyfulvenes

    Get PDF
    Cationic polymerisation of 6,6-disubstituted pentafulvenes yields highly unsaturated, reactive macromolecules of high mo- . lecular weight. The mechanistic pathways leading to the polymers are discussed, and the structure XIV of the polymers has been elucidated by a combination of spectroscopic methods as well as by comparison with model compounds. In contrast to reports in the literature, the main process in thermal oligomerisation of simple pentafulvenes at 20 °c is a Diels-Alder reaction giving products of type XXI. Anionic polymerisation of pentafulvenes is initiated by traces of sodium cyclopentadienide or phenylsodium respectively. The reaction products consist of a mixture of oligomers of the series (fulvene)n. This surprising result can be explained by structure elucidation of the fulvene dimers, which gives formula XX. The mechanistic aspects of the reaction are discussed

    The kainate receptor antagonist UBP310 but not single deletion of GluK1, GluK2, or GluK3 subunits, inhibits MPTP-induced degeneration in the mouse midbrain

    Full text link
    © 2019 Elsevier Inc. The excitatory neurotransmitter glutamate is essential in basal ganglia motor circuits and has long been thought to contribute to cell death and degeneration in Parkinson's disease (PD). While previous research has shown a significant role of NMDA and AMPA receptors in both excitotoxicity and PD, the third class of ionotropic glutamate receptors, kainate receptors, have been less well studied. Given the expression of kainate receptor subunits GluK1-GluK3 in key PD-related brain regions, it has been suggested that GluK1-GluK3 may contribute to excitotoxic cell loss. Therefore the neuroprotective potential of the kainate receptor antagonist UBP310 in animal models of PD was investigated in this study. Stereological quantification revealed administration of UBP310 significantly increased survival of dopaminergic and total neuron populations in the substantia nigra pars compacta in the acute MPTP mouse model of PD. In contrast, UBP310 was unable to rescue MPTP-induced loss of dopamine levels or dopamine transporter expression in the striatum. Furthermore, deletion of GluK1, GluK2 or GluK3 had no effect on MPTP or UBP310-mediated effects across all measures. Interestingly, UBP310 did not attenuate cell loss in the midbrain induced by intrastriatal 6-OHDA toxicity. These results indicate UBP310 provides neuroprotection in the midbrain against MPTP neurotoxicity that is not dependent on specific kainate receptor subunits

    Association Between Gabapentin Receipt for Any Indication and Alcohol Use Disorders Identification Test-Consumption Scores Among Clinical Subpopulations With and Without Alcohol Use Disorder.

    Get PDF
    BACKGROUND: Current medications for alcohol use disorder (AUD) have limited efficacy and utilization. Some clinical trials have shown efficacy for gabapentin among treatment-seeking individuals. The impact of gabapentin on alcohol consumption in a more general sample remains unknown. METHODS: We identified patients prescribed gabapentin for ≥180 consecutive days for any clinical indication other than substance use treatment between 2009 and 2015 in the Veterans Aging Cohort Study. We propensity-score matched each gabapentin-exposed patient with up to 5 unexposed patients. Multivariable difference-in-difference (DiD) linear regression models estimated the differential change in Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) scores during follow-up between exposed and unexposed patients, by baseline level of alcohol consumption and daily gabapentin dose. Analyses were stratified by AUD history. Clinically meaningful changes were a priori considered a DiD ≥1 point. RESULTS: Among patients with AUD, AUDIT-C scores decreased 0.39 points (95% confidence interval [CI] 0.05, 0.73) more among exposed than unexposed patients (p < 0.03). Potentially clinically meaningful differences were observed among those with AUD and exposed to ≥1,500 mg/d (DiD 0.77, 95% CI 0.15, 1.38, p < 0.02). No statistically significant effects were found among patients with AUD at doses lower than 1,500 mg/d or baseline AUDIT-C ≥4. Among patients without AUD, we found no overall difference in changes in AUDIT-C scores, nor in analyses stratified by baseline level of alcohol consumption. CONCLUSIONS: Patients exposed to doses of gabapentin consistent with those used in clinical trials, particularly those with AUD, experienced a greater decrease in AUDIT-C scores than matched unexposed patients

    Multimodality Treatment for Early-Stage Hepatocellular Carcinoma: A Bridging Therapy for Liver Transplantation

    Get PDF
    Purpose: To evaluate the efficiency of a multimodality approach consisting of transcatheter arterial chemoembolization (TACE) and radiofrequency ablation (RFA) as bridging therapy for patients with hepatocellular carcinoma (HCC) awaiting orthotopic liver transplantation (OLT) and to evaluate the histopathological response in explant specimens. Materials and Methods: Between April 2001 and November 2011, 36 patients with 50 HCC nodules (1.4-5.0 cm, median 2.8 cm) on the waiting list for liver transplantation were treated by TACE and RFA. The drop-out rate during the follow-up period was recorded. The local efficacy was evaluated by histopathological examination of the explanted livers. Results: During a median follow-up time of 29 (4.0-95.3) months the cumulative drop-out rate for the patients on the waiting list was 0, 2.8, 5.5, 11.0, 13.9 and 16.7% at 3, 6, 12, 24, 36 and 48 months, respectively. 16 patients (with 26 HCC lesions) out of 36(44.4%) were transplanted by the end of study with a median waiting list time of 13.7 (2.5-37.8) months. The histopathological examination of the explanted specimens revealed a complete necrosis in 20 of 26 HCCs (76.9%), whereas 6 (23.1%) nodules showed viable residual tumor tissue. All transplanted patients are alive at a median time of 29.9 months. Imaging correlation showed 100% specificity and 66.7% sensitivity for the depiction of residual or recurrent tumor. Conclusion: We conclude that TACE.combined with RFA could provide an effective treatment to decrease the drop-out rate from the OLT waiting list for HCC patients. Furthermore, this combination therapy results in high rates of complete tumor necrosis as evaluated in the histopathological analysis of the explanted livers. Further randomized trials are needed to demonstrate if there is a benefit in comparison with a single-treatment approach. copyright (C) 2012 S. Karger AG, Base

    Cross-Level Replication and Extension of Steel and Rentsch's (1995) Longitudinal Absence Findings

    Full text link
    Absenteeism findings published by Steel and Rentsch (1995) were replicated and extended by correlating attitudinal, personal-demographic, and job stress variables with 34 months of work group absenteeism scores obtained on employees of a U.S. federal mint. Attitudinal and job stress results were consistent with previous findings, but results involving personal-demographic variables were not.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44826/1/10869_2004_Article_344104.pd

    Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer’s disease by capillary western blotting

    Get PDF
    IntroductionAccurate modelling of molecular changes in Alzheimer’s disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting.MethodsHere, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice.ResultsWe observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD.DiscussionOur findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD
    • …
    corecore