95 research outputs found
Stability of Granular Materials under Vertical Vibrations
The influence of periodic vibrations on the granular flow of materials is of great interests to scientists and engineers due to both theoretical and practical reasons. In this paper, the stability of a vertically vibrated granular layer is examined by linear stability analysis. This includes two major steps, firstly, the base state at various values of mass holdup (Mt) and energy input (Qt) is calculated and secondly, small perturbations are introduced to verify the stability of the base state by solving the resultant eigenvalue problem derived from the linearized governing equations and corresponding boundary conditions. Results from the base state solution show that, for a given pair of Mt and Qt, solid fraction tends to increase at first along the layer height and then decrease after a certain vertical position while granular temperature decreases rapidly from the bottom plate to the top surface. This may be due to the existence of inelastic collisions between particles that dissipate the energy input from the bottom. It is also found that more energy input results in a lower solid fraction and a higher granular temperature. The stability diagram is constructed by checking the stability property at different points in the Mt-Qt plane. For a fixed Mt, the base state is stable at low energy inputs, and becomes unstable if Qt is larger than a critical value Qtc1. A higher value of Mt corresponds to a larger Qtc1. There also exists a critical mass holdup (Mtc), for Mt larger than Mtc, the patterns corresponding to the instabilities are standing waves (stationary mode); otherwise the flat layer appears (layer mode). Moreover, the stationary mode turns into the layer mode when Qt is increased beyond a critical value Qtc2. These findings agree with the experimental observations of other researchers (Hsiau and Pan, 1998). The effects of restitution coefficients (ep, ew) and material properties (dp, Ïp) on the stability diagram are also investigated. Together with Mt and Qt these variables can be classified into two groups, i.e. the stabilizing factors (Mt, dp, Ïp) and the destabilizing factors (Qt, ep, ew). The stability of the system is enhanced with increasing stabilizing factors and decreasing destabilizing factors.Singapore-MIT Alliance (SMA
Bubble Behavior in a Taylor Vortex
We present an experimental study on the behavior of bubbles captured in a Taylor vortex. The gap between a rotating inner cylinder and a stationary outer cylinder is filled with a Newtonian mineral oil. Beyond a critical rotation speed (Ï[subscript c]), Taylor vortices appear in this system. Small air bubbles are introduced into the gap through a needle connected to a syringe pump. These are then captured in the cores of the vortices (core bubble) and in the outflow regions along the inner cylinder (wall bubble). The flow field is measured with a two-dimensional particle imaging velocimetry (PIV) system. The motion of the bubbles is monitored by using a high speed video camera. It has been found that, if the core bubbles are all of the same size, a bubble ring forms at the center of the vortex such that bubbles are azimuthally uniformly distributed. There is a saturation number (N[subscript s]) of bubbles in the ring, such that the addition of one more bubble leads eventually to a coalescence and a subsequent complicated evolution. Ns increases with increasing rotation speed and decreasing bubble size. For bubbles of non-uniform size, small bubbles and large bubbles in nearly the same orbit can be observed to cross due to their different circulating speeds. The wall bubbles, however, do not become uniformly distributed, but instead form short bubble-chains which might eventually evolve into large bubbles. The motion of droplets and particles in a Taylor vortex was also investigated. As with bubbles, droplets and particles align into a ring structure at low rotation speeds, but the saturation number is much smaller. Moreover, at high rotation speeds, droplets and particles exhibit a characteristic periodic oscillation in the axial, radial and tangential directions due to their inertia. In addition, experiments with non-spherical particles show that they behave rather similarly. This study provides a better understanding of particulate behavior in vortex flow structures.Singapore-MIT Alliance (SMA
Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA
Background
Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133).
Methods
We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation.
Results
miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass.
Conclusion
miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers
Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study
Introduction. Switchingfrom polluting (e.g. wood, crop waste, coal)to clean (e.g. gas, electricity) cooking
fuels can reduce household air pollution exposures and climate-forcing emissions.While studies have
evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role
of different multilevel factors in household fuel switching, outside of interventions and across diverse
community settings, is not well understood. Methods.We examined longitudinal survey data from
24 172 households in 177 rural communities across nine countries within the Prospective Urban and
Rural Epidemiology study.We assessed household-level primary cooking fuel switching during a
median of 10 years offollow up (âŒ2005â2015).We used hierarchical logistic regression models to
examine the relative importance of household, community, sub-national and national-level factors
contributing to primary fuel switching. Results. One-half of study households(12 369)reported
changing their primary cookingfuels between baseline andfollow up surveys. Of these, 61% (7582)
switchedfrom polluting (wood, dung, agricultural waste, charcoal, coal, kerosene)to clean (gas,
electricity)fuels, 26% (3109)switched between different polluting fuels, 10% (1164)switched from clean
to polluting fuels and 3% (522)switched between different clean fuels
Evaluation of Spatial and Temporal Variations in the Difference between Soil and Air Temperatures on the QinghaiâTibetan Plateau Using Reanalysis Data Products
Many extreme meteorological events are closely related to the strength of landâatmosphere interactions. In this study, the heat exchange regime between the shallow soil layer and the atmosphere over the QinghaiâTibetan Plateau (QTP) was investigated using a reanalysis dataset. The analysis was conducted using a simple metric ÎT, defined as the difference between the temperatures of the shallow soil and the air. First, the performance of 4 widely used reanalysis data products (GLDAS-Noah, NCEP-R2, ERA5 and ERA5-land) in estimating ÎT on the QTP at soil depths of 0~7 or 0~10 cm was evaluated during the baseline period (1981â2010); the ERA5-land product was selected for subsequent analysis, because it yielded a better performance in estimating the annual and seasonal ÎT and finer spatial resolution than the other datasets. Using the soil temperature at depths of 0~7 cm and the air temperature at 2 m above the ground, as provided by the ERA5-Land reanalysis dataset, the entire QTP was found to be dominated by a positive ÎT both annually and seasonally during the baseline period, with large differences in the spatial distribution of the seasonal values of ÎT. From 1950 to 2021, the QTP experienced a significant decreasing trend in the annual ÎT at a rate of â0.07 °C/decade, and obvious decreases have also been detected at the seasonal level (except in spring). In the southern and northeastern parts of the QTP, rapid rates of decrease in the annual ÎT were detected, and the areas with significantly decreasing trends in ÎT were found to increase in size gradually from summer, through autumn, to winter. This study provides a holistic view of the spatiotemporal variations in ÎT on the QTP, and the findings can improve our understanding of the landâatmosphere thermal interactions in this region and provide important information pertaining to regional ecological diversity, hydrology, agricultural activity and infrastructural stability
Particle Image Velocimetry Study on the Stripe Formation in Vertically Vibrated Granules
Recently, granules under vertical vibrations receive many attentions due to their importance in theoretical research and engineering application. In this paper, a two-dimensional Particle Image Velocimetry (PIV) system was used to examine the f/2 stripe pattern forming in a vertically vibrated granular layer. Since the PIV sampling frequency does not match with the vibrating frequency, a special identification-coupling method was adopted to combine the images taken in different cycles to offer the information in one complete cycle. The measured velocity vectors showed exactly the particle motions at various stages of a motion cycle, illustrating the alternating peaks and valleys on the layer top. Furthermore, quantitative results on the temporal evolution of velocity profiles were obtained and some other interesting phenomena were observed, such as the appearance of local structures (e.g. dual-phase layer structure) and the moving feature of the 'standing point'. The mechanism accounting for the occurrence of stripes on the surface is also discussed. This work will be of interest to a better understanding on pattern formation in the vibrating granular bed.Singapore-MIT Alliance (SMA
A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries
In this study, a non-lithiophilic nickel foam (NF) was transformed into a 3D lithiophilic N-doped graphene/nickel foam (NGNF) scaffold by a simple hydrothermal method. This scaffold can increase the area for Li deposition, improve the poor lithiophilicity of NF, and decrease the overpotential for Li deposition, leading to uniform Li plating/stripping. Thus, the average coulombic efficiency for Li deposition on the NGNF electrode can remain as high as 98.3% over 200 cycles and 98.0% over 100 cycles at current densities of 2 mA cm-2and 4 mA cm-2, respectively. Even when the Li deposition capacity is increased to as high as 10 mA h cm-2, the cells with NGNF electrodes still exhibit stable cycling performance with a high coulombic efficiency of 98.9% after 84 cycles. Density functional theory (DFT) calculations were performed to achieve a deeper understanding of the interaction between Li atoms and the designed scaffold. In addition, the potential application of the scaffold is further demonstrated by the superior electrochemical performance of an assembled LiFePO4/Li-NGNF full cell under room-temperature and low-temperature conditions
- âŠ