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Abstract— The influence of periodic vibrations on the granular 
flow of materials is of great interests to scientists and engineers 
due to both theoretical and practical reasons. In this paper, the 
stability of a vertically vibrated granular layer is examined by 
linear stability analysis. This includes two major steps, firstly, the 
base state at various values of mass holdup (Mt) and energy input 
(Qt) is calculated and secondly, small perturbations are 
introduced to verify the stability of the base state by solving the 
resultant eigenvalue problem derived from the linearized 
governing equations and corresponding boundary conditions.  
Results from the base state solution show that, for a given pair of 
Mt and Qt, solid fraction tends to increase at first along the layer 
height and then decrease after a certain vertical position while 
granular temperature decreases rapidly from the bottom plate to 
the top surface. This may be due to the existence of inelastic 
collisions between particles that dissipate the energy input from 
the bottom. It is also found that more energy input results in a 
lower solid fraction and a higher granular temperature. The 
stability diagram is constructed by checking the stability property 
at different points in the Mt-Qt plane. For a fixed Mt, the base state 
is stable at low energy inputs, and becomes unstable if Qt is larger 
than a critical value Qtc1. A higher value of Mt corresponds to a 
larger Qtc1. There also exists a critical mass holdup (Mtc), for Mt 
larger than Mtc, the patterns corresponding to the instabilities are 
standing waves (stationary mode); otherwise the flat layer 
appears (layer mode). Moreover, the stationary mode turns into 
the layer mode when Qt is increased beyond a critical value Qtc2. 
These findings agree with the experimental observations of other 
researchers (Hsiau and Pan, 1998). The effects of restitution 
coefficients (ep, ew) and material properties (dp, ρp) on the stability 
diagram are also investigated. Together with Mt and Qt these 
variables can be classified into two groups, i.e. the stabilizing 
factors (Mt, dp, ρp) and the destabilizing factors (Qt, ep, ew).  The 
stability of the system is enhanced with increasing stabilizing 
factors and decreasing destabilizing factors.   
 

Index Terms—Stability, Granular Materials, Vibrations, Grain 
Kinetic Theory.  
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GRANULAR materials (sands, grains, catalyst particles, 
chemical products, etc.) under vertical vibrations are of great 
interest to engineers and scientists due to practical and 
theoretical reasons. For instance, shakers are widely used for 
the mixing, separation and drying processes of particles in 
industries such as mining, agriculture, construction and 
chemical engineering. On the other hand, the occurrence of 
traveling waves (Pak & Behringer, 1993) and standing waves 
(Umbanhowar, 1997) on the free surface shows the existence of 
instabilities in this system.  

In this paper, a stability analysis method based on the grain 
kinetic theory, which has been successfully applied to study the 
instabilities occurring in the shear flow and gravity channel 
flow (Wang et al., 1997; Wang & Tong, 1998, 2001), is 
adopted to generate an understanding of the instabilities stated 
above, especially about the determination of the unstable range 
of operating conditions. To do this, a base state solution is 
firstly found by solving the macroscopic balance equations 
based on the grain kinetic theory and secondly, small 
perturbations are introduced to examine the stability property 
of the corresponding base state. 

  
II MODEL DESCRIPTION 

Figure 1 shows the case to be studied. A bed (height: H0, mass 
hold-up: mp) of granular materials (particle density: ρp, particle 
diameter: dp) is placed on the top of a vertically vibrated flat 
plate. The energy flux supplied from the bottom plate to the 
granular layer is Q0, and as a result of the vibration the bed 
expands from its original height to H. In the base state, the 
materials are activated to move up and down around their own 
equilibrium position, while the free surface still keeps flat. The 
zero point of y is set at the center line of the vibrating bottom 
plate, and the dimensions of x and z are assumed to be infinite 
because the shape and size of the container do not influence the 
stability of the system (Melo et al., 1994). The movement is 
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Figure 1 Schematic Diagram of Granular Materials under vertical vibrations. 



 
 

considered as steady, and the mean velocity of particles in each 
direction is zero. Furthermore, the friction between particles is 
neglected and only inelastic collisions are left as the 
particle-particle and particle-wall contact. 

 The governing equations of mass, momentum and 
pseudo-thermal energy are those used by Wang et al. (1997) 
and Wang & Tong (1998, 2001) 
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Here g is the gravity force vector, ρ is the bulk density of the 
material, given by ρ =ρpν, where ν is the volume fraction of 
solids. u is the local mean velocity, σ is the stress tensor for the 
granular assembly and T is the granular temperature, defined as 
1/3<u′2>, where u′ is the magnitude of the fluctuation about the 
local mean velocity. q is the flux vector of the pseudo-thermal 
energy associated with the fluctuations in particle velocity, and 
J denotes the rate of dissipation of this energy, per unit volume, 
by inelastic collisions between particles. D/Dt represents the 
material time derivative following the mean motion. The 
constitutive relationship for σ, q and J are those of Lun et al. 
(1984).  

Boundary conditions at the bottom plate, which take 
account of momentum and energy transfer between the wall 
and the materials, are the same as those used by Johnson & 
Jackson (1987) 
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In equations (4) and (5), n is the unit normal to the wall, 
pointing into the granular material, usl is the velocity of the 
granular material in contact with the wall, and t is a unit vector 
tangent to the wall, in the direction of the slip velocity. The 
nature of the plate is characterized by φ′, a specularity factor 
(which measures the fraction of the momentum of an incident 
particle in the direction of slip which is transmitted, on average, 
to the wall in a collision), and ew, the coefficient of restitution 
for collisions between particles and the wall. Since the value of 
usl is zero for the base state, equation (4) is satisfied trivially.  

One boundary condition at the free surface can be obtained 
by examining the force balance for particles at the top layer, 
that is, the gravity should be balanced by the supporting force 
from the materials 
                (6) caM ⋅⋅= óng

Another boundary condition is obtained from the fact that there 
is no energy input at the free surface, thus 

0=⋅qn             (7) 

For convenience, the following dimensionless groups are 
introduced 
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A finite difference method is used here to solve the 
equations for base state above. The interval of [0,1] in Y-axis is 
divided into N sub-intervals, and both the equations and 
boundary conditions are discretized at the grid points. Given 
the values of Mt and Qt, the bed height H as well as ν(Y) and 
T(Y) for the base state are calculated through an iteration 
process.  

Then, the stability of these steady solutions to small 
perturbations is studied. Here the motion of the material under 
vibration is no longer considered to be steady, and the variables 
of U, V, ν, T in the governing equations (1) - (3) and boundary 
conditions (4) - (7) are expressed as the base state solutions U0, 
V0, ν0, T0 (Note that U0 and V0 are zero) plus small perturbations 
U′, V′, ν′, T′ 

)exp()exp()(where)(
)exp()exp()(where)(
)exp()exp()(where)(

)exp()exp()(where)(

0

0

0

0

XiKYTTTYTT
XiKYY
XiKYVVVYVV

XiKYUUUYUU

xe

xe

xe

xe

τ
τννννν
τ

τ

Ω=′′+=
Ω=′′+=
Ω=′′+=

Ω=′′+=

(10) 

By adopting the same method used by Wang et al. (1997), a 
set of ordinary differential equations in the variables Ue, Ve, νe 
and Te, subject to two-point boundary conditions, is obtained 
and constitutes an eigenvalue problem for Ω. This is converted 
to a matrix eigenvalue problem by taking finite differences, and 
the resulting eigenvalues are computed with Matlab for a 
sequence of values of Kx to generate a dispersion relation for 
each set of values of the physical parameters of the problem. 
These eigenvalues are then used to determine the stability 
property of the original base state.  

 
III BASE STATE SOLUTION 

The distribution of solid fraction along the Y direction is 
shown in Fig.2 (a). For a given pair of Mt and Qt, solid fraction 
tends to increase at first along the layer height and then 
decrease after a certain vertical position, forming a peak of 
density usually at Yc=0.7~0.9. The occurrence of the densest 
part in the mid-bed may be due to the joint effects of the energy 
input from the bottom that scatters the particles and the 
unbounded movement of particles at the free surface. The 



 
 

temperature profile along the Y direction is shown in Fig.2 (b). 
It can be seen that particle temperature decreases rapidly from 
the bottom to the top as a result of the inelastic collisions 
between particles that dissipates the energy input from the 
bottom.  

 
Richman and Martin (1992) calculated the profiles of solid 

fraction and particle temperature in a vibrating granular 
materials bed based on the grain kinetic theory. Their results 
are also compared with this work in Fig.2. Since no direct 
relationship exists between the energy input Qt (our parameter) 
and the dimensionless root mean square velocity Vb (Richman’s 
parameter), the mass holdup (Mt) and the solid fraction at the 
bottom plate (ν0) are set identical in order to carry out the 
comparison. The distribution of granular temperature agrees 
well, however some differences are observed in the solid 
fraction profile especially at the free surface. When (Mt, Qt) = 
(5.0, 27.7), both models predict a “step change” in solid 
fraction at the free surface, which remains in our model at (3.0, 
19.8) while in Richman’s model it turns into a smooth approach 
to zero. The deviation may be due to the different boundary 
conditions adopted in these two models: Richman and Martin 
assumed that the normal stress at the top surface is zero instead 
of the force balance examination in this work.  

However, we do not want to make a judgment about the 
suitability of the two models. Actually, the base state solution 
does not always exist in real experiments. If the base state is 
stable, it can be observed; otherwise, the perturbations existing 
in the experimental conditions will change the original unstable 
base state into a new stable one. For example, according to the 
stability diagram in Mt-Qt plane (Fig.3), the base state at point 
(5.0, 27.7) is stable but that at point (3.0, 19.8) is unstable and 
will evolve into a new state in which the solid fraction smoothly 
approaches to zero at the free surface as Richman’s model 
suggests (The details will be discussed elsewhere). In this 
sense, Richman’s model may present the final solution, while 
the base state obtained from this work is an intermediate whose 
fate depends on the stability analysis. 

 
IV STABILITY DIAGRAM 8

The stability diagram is shown in Fig. 3. Because Mt and Qt 

are the only two operating parameters used in the simulation, 
any point in the plane represents a base state whose stability 
property can be determined from this diagram. 

0.2

0.4

0.6

 

 0This work, Qt=27.7, Mt=5.
 Richman, vb=2.0, Mt=3.0
 Ri

2

3

4

5

6

7

 

 

 This work, Qt=19.8, Mt=3.0
 This work, Qt=27.7, Mt=5.0
 Richman, vb=2.0, Mt=3.0
 Ri

T*

Now we consider a point (Mt, Qt). If N grid points are 
adopted in the finite difference method, then for a fixed Kx, 
(4N-7) eigenvalues will be found among which we choose the 
one with the largest real part of eigenvalue as the leading 
eigenvalue. A group of leading eigenvalues can be obtained by 
scanning Kx in a wide range, for example, the Ωr-Kx curve in 
Fig.4 represents the real part of a set of leading eigenvalues 
(Ωr) at different values of Kx. For such a curve, there may be 
some local maximums, such as the points marked by the circle 
and the square. The eigenvalues related to these local 
maximums are called chief eigenvalues, among which the one 

with the largest real part is referred to as the dominant 
eigenvalue (denoted by circle in Fig.4 (a) and square in Fig.4 
(b)). If Ω corresponding to the dominant eigenvalue is 
positive, the perturbations in the form of equation (10) will 
increase exponentially with time in the linear stability analysis, 
to which we call the base state is “unstable”; otherwise, the 
perturbations will vanish in the end and keep the present base 
state unchanged, to which we call the base state is “stable”. 
Here,  serves as an index for the growth rate of 

perturbations, and 

r

rΩ

xi K/Ω  refers to phase velocity.   
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The solid curves shown in Fig.3 are contours of the real part 
of chief eigenvalues, with the relevant Ω  marked nearby. 
There are obviously two sets of contours: one is named as L set 
(shown in heavy curves), corresponding to the point marked by 
circle in Fig.4 where K

r

x is zero; the other is named as S set 
(shown in light curves), corresponding to the point marked by 
square where Kx is positive. These two sets mix together, and 
contours from one set cross those from the other set. Moreover, 
all the contours show that the growth rate increases with 
increasing energy and decreasing mass holdup. Thus, the 
contours with a Ω  value of zero form the division between 
the stable and the unstable area: to the bottom-right of the 
division are the stable base states, and to the top-left are the 
unstable base states. 

r

The light dash curve in the diagram consists of the 
intersections of two contours that have the same value of Ω  
but come from two different sets. That means, any point on this 
curve has two equal chief eigenvalues, one is in L set and the 
other is in S set. For any point to the left of the curve, the 
contour from L set has a larger Ω  than that from S set, which 
indicates the Chief eigenvalue from L set (denoted by L-C 
eigenvalue) is the dominant eigenvalue; for points to the right 
of the curve, the Chief eigenvalue from S set (S-C eigenvalue) 
is the dominant eigenvalue.  

r

r

Figure 2 Distribution of (a) solid fraction (b) granular temperature 
along the bed height at base state. 

0 .2 . .

0.8

1.0
 

 This work, Qt=19.8, Mt=3.0 (a) (b) 
chman, vb=2.0, Mt=5.0

ν

chman, vb=2.0, Mt=5.0

Unstable 

Q
t 

Ωr 

Mt 

Stable 

B 

A 

Figure 3 Stability diagram showing the contours of Ωr. Ωr =0 refers to 
the neutral stability contour, Ωr >0 and Ωr <0 refer to the 
unstable and stable regimes, respectively. 



 
 

 

As stated above, the L-C eigenvalue always appears at the 
point where Kx is zero. Referring to the perturbation form we 
adopt in equation (10), it states that the forming new pattern 
will be unifrom in X direction and only vary along Y 
dimension. This feature indicates a layer mode. As shown in 
Fig. 3, the phase velocity related to the S-C eigenvalue is zero, 
which means the waves are standing and consists the stationary 
mode. Therefore, the light dash curve is also the division 
between these two modes: to the left the dominant mode is the 
layer mode, and to the right is the stationary mode.  

However, none of the L set and the S set distributes 
throughout the whole region. A heavy dash curve in the 
diagram serves as the beginning of the S set  contours in the S 
set never appear in the area to the top-left of the heavy dash 
curve. On the other hand, a heavy dash-dot curve in the 
top-right of diagram encloses a zone where only the S set 
exists.  

 
For the mass holdup higher than a critical value Mtc (i.e., 

Mt=4.75), the stationary mode begins to dominate in the Mt-Qt 
plane at small energy inputs. Standing waves appear when Qt is 
increased over Qtc1 = 51.31 while disappear again over Qtc2 = 
126.45. This agrees well with the experimental observations of 
Metcalf et al. (1997) that for a given frequency, there was an 
onset acceleration, Γon, above which ordered wave patterns 

formed and a higher acceleration, Γoff, beyond which waves 
were no longer observed. The transition of Qtc2 may correspond 
to the arching state reported by Hsiau & Pan (1998). For a 
shallow bed with the mass holdup lower than Mtc, our model 
suggests that the flat layer is the dominant pattern without the 
occurrence of standing waves. This is verified by the 
experimental results of Melo et al. (1994) which stated that the 
waves disappear when the layer is thin (for their system, the 
critical dimensionless bed height is H0 /dp=3). 
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(a) 

The effects of ew and ep on the stability diagram are also 
examined. The results show that the energy needed to attain the 
least-stable state increases with deceasing ew, as well as the 
range of stationary mode is enlarged. If the case requiring a 
higher energy at the least-stable state is regarded as “more 
stable”, the above facts mean that a high value of ew will 
destabilize the system. It is also found that ep has the same 
effect in destabilization as ew does. Therefore, it can be 
concluded that the increase in Qt, ep or ew will cause the base 
state to be unstable and these variables are referred to as 
“destabilizing” factors. On the other hand, any change to 
increase Mt, dp or ρp can suppress the occurrence of instability, 
thus these parameters are viewed as the “stabilizing” factor 
here. There is a trade off between these two kinds of opposing 
factors to decide on whether a base state is stable or not. 

(b) 

 
V  CONCLUSIONS 

 
According to the instability analysis above, base states in 

the Mt-Qt plane are classified as stable and unstable regimes, 
depending on the parameter values (Mt-Qt). For the stable area, 
the small perturbations introduced diminish gradually while the 
unstable area evolves into a new stable base state. The results 
show that the base state becomes more stable with the 
increasing stabilizing factor and deceasing destabilizing factor. 

Figure 4 Dispersion relations (a) at point A and (b) at point B, where A and 
B are indicated in Fig.3. 
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