6 research outputs found

    Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival

    Get PDF
    Introduction: Presence of disseminated tumor cells (DTCs) in bone marrow (BM) and circulating tumor cells (CTC) in peripheral blood (PB) predicts reduced survival in early breast cancer. The aim of this study was to determine the presence of and alterations in DTC- and CTC-status in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy (NACT) and to evaluate their prognostic impact. Methods: Bone marrow and peripheral blood were collected before NACT (BM1: n = 231/PB1: n = 219), at surgery (BM2: n = 69/PB2: n = 71), and after 12 months from start of NACT (BM3: n = 162/PB3: n = 141). Patients were included from 1997 to 2003 and followed until 2009 (or ten years follow-up). DTC- and CTC-status were determined by morphological evaluation of immunocytochemically detected cytokeratin-positive cells. The prognostic significance of DTCs/CTCs was assessed by univariate and multivariate Cox-regression analyses. Results: Before NACT, DTCs and CTCs were detected in 21.2% and 4.9% of the patients, respectively. At surgery, 15.9% and 1.4% had DTC- and CTC-presence, compared to 26.5% and 4.3% at 12 months from start of NACT. Of patients for whom DTC results both before NACT and at 12 months were available, concordant results were observed in 68%, and 14 out of 65 had positive DTC-status at both time points. Presence of ≥ 1 DTC 12 months from start of NACT, but not at other time points, predicted reduced disease-free survival (DFS; HR 2.3, p = 0.003), breast cancer-specific survival (BCSS; HR 3.0, p < 0.001) and overall survival (OS; HR 2.8, p < 0.001). Before NACT, presence of ≥ 3 DTCs was also associated with unfavorable outcome, and reduced BCSS was observed for CTCpositive patients (HR 2.2, p = 0.046). In multivariate analysis, DTC status (</≥ 1 DTC) at 12 months after start of NACT remained as a prognostic factor for both DFS (HR 2.2, p = 0.005), BCSS (HR 2.6, p = 0.002) and OS (HR 2.6,p = 0.002). The survival for patients with change in DTC-status was determined by the DTC-status at 12 months. Conclusion: Presence of DTCs after NACT indicated high risk for relapse and death, irrespective of the DTC-status before treatment. The results supports the potential use of DTC analysis as a monitoring tool during follow up, for selection of patients to secondary treatment intervention within clinical trials

    NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients

    No full text
    Background: The presence of disseminated tumor cells (DTCs) in bone marrow (BM) is an independent prognostic factor in early breast cancer but does not uniformly predict outcome. Tumor cells can persist in a quiescent state over time, but clinical studies of markers predicting the awakening potential of DTCs are lacking. Recently, experiments have shown that NR2F1 (COUP-TF1) plays a key role in dormancy signaling. Methods: We analyzed the NR2F1 expression in DTCs by double immunofluorescence (DIF) staining of extra cytospins prepared from 114 BM samples from 86 selected DTC-positive breast cancer patients. Samples collected at two or more time points were available for 24 patients. Fifteen samples were also analyzed for the proliferation marker Ki67. Results: Of the patients with detectable DTCs by DIF, 27% had ≥ 50% NR2F1high DTCs, chosen a priori as the cut-off for “dormant profile” classification. All patients with systemic relapse within 12 months after BM aspiration carried ≤ 1% NR2F1high DTCs, including patients who transitioned from having NR2F1high-expressing DTCs in previous BM samples. Of the patients with serial samples, half of those with no relapse at follow-up had ≥ 50% NR2F1high DTCs in the last BM aspiration analyzed. Among the 18 relapse-free patients at the time of the last DTC-positive BM aspiration with no subsequent BM analysis performed, distant disease-free intervals were favorable for patients carrying ≥ 50% NR2F1high DTCs compared with those with predominantly NR2F1low DTCs (p = 0.007, log-rank). No survival difference was observed by classification according to Ki67-expressing DTCs (p = 0.520). Conclusions: Our study translates findings from basic biological analysis of DTC dormancy to the clinical situation and supports further clinical studies of NR2F1 as a marker of dormancy

    NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients

    Get PDF
    Background The presence of disseminated tumor cells (DTCs) in bone marrow (BM) is an independent prognostic factor in early breast cancer but does not uniformly predict outcome. Tumor cells can persist in a quiescent state over time, but clinical studies of markers predicting the awakening potential of DTCs are lacking. Recently, experiments have shown that NR2F1 (COUP-TF1) plays a key role in dormancy signaling. Methods We analyzed the NR2F1 expression in DTCs by double immunofluorescence (DIF) staining of extra cytospins prepared from 114 BM samples from 86 selected DTC-positive breast cancer patients. Samples collected at two or more time points were available for 24 patients. Fifteen samples were also analyzed for the proliferation marker Ki67. Results Of the patients with detectable DTCs by DIF, 27% had ≥ 50% NR2F1high DTCs, chosen a priori as the cut-off for “dormant profile” classification. All patients with systemic relapse within 12 months after BM aspiration carried ≤ 1% NR2F1high DTCs, including patients who transitioned from having NR2F1high-expressing DTCs in previous BM samples. Of the patients with serial samples, half of those with no relapse at follow-up had ≥ 50% NR2F1high DTCs in the last BM aspiration analyzed. Among the 18 relapse-free patients at the time of the last DTC-positive BM aspiration with no subsequent BM analysis performed, distant disease-free intervals were favorable for patients carrying ≥ 50% NR2F1high DTCs compared with those with predominantly NR2F1low DTCs (p = 0.007, log-rank). No survival difference was observed by classification according to Ki67-expressing DTCs (p = 0.520). Conclusions Our study translates findings from basic biological analysis of DTC dormancy to the clinical situation and supports further clinical studies of NR2F1 as a marker of dormancy

    Cytokeratin-positive cells in the bone marrow from patients with pancreatic, periampullary malignancy and benign pancreatic disease show no prognostic information

    No full text
    Background Pancreatic and periampullary carcinoma are aggressive tumours where preoperative assessment is challenging. Disseminated tumour cells (DTC) in the bone marrow (BM) are associated with impaired prognosis in a variety of epithelial cancers. In a cohort of patients with presumed resectable pancreatic and periampullary carcinoma, we evaluated the frequency and the potential prognostic impact of the preoperative presence of DTC, defined as cytokeratin-positive cells detected by immunocytochemistry (ICC). Methods Preoperative BM samples from 242 patients selected for surgical resection of presumed resectable pancreatic and periampullary carcinoma from 09/2009 to 12/2014, were analysed for presence of CK-positive cells by ICC. The median observation time was 21.5 months. Overall survival (OS) and disease-free survival (DFS) were calculated by Kaplan-Meier and Cox regression analysis. Results Successful resections of malignant tumours were performed in 179 of the cases, 30 patients resected had benign pancreatic disease based on postoperative histology, and 33 were deemed inoperable intraoperatively due to advanced disease. Overall survival for patients with resected carcinoma was 21.1 months (95% CI: 18.0–24.1), for those with benign disease OS was 101 months (95% CI: 69.4–132) and for those with advanced disease OS was 8.8 months (95% CI: 4.3–13.3). The proportion of patients with detected CK-positive cells was 6/168 (3.6%) in resected malignant cases, 2/31 (6.5%) in advanced disease and 4/29 (13.8%) in benign disease. The presence of CK-positive cells was not correlated to OS or DFS, neither in the entire cohort nor in the subgroup negative for circulating tumour cells (CTC). Conclusions The results indicate that CK-positive cells may be present in both patients with malignant and benign diseases of the pancreas. Detection of CK-positive cells was not associated with differences in prognosis for the entire cohort or any of the subgroups analysed. Trial registration clinicaltrials.gov (NCT01919151)
    corecore