89 research outputs found

    Prospects for macroscopic dark matter detection at space-based and suborbital experiments

    Full text link
    We compare two different formalisms for modeling the energy deposition of macroscopically sized/massive quark nuggets (a.k.a. macros) in the Earth's atmosphere. We show that for a reference mass of 1 g, there is a discrepancy in the macro luminosity of about 14 orders of magnitude between the predictions of the two formalisms. Armed with our finding we estimate the sensitivity for macro detection at space-based (Mini-EUSO and POEMMA) and suborbital (EUSO-SPB2) experiments.Comment: 5 pages revtex, 3 figure

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore

    Major flaws in conflict prevention policies towards Africa : the conceptual deficits of international actors’ approaches and how to overcome them

    Get PDF
    Current thinking on African conflicts suffers from misinterpretations oversimplification, lack of focus, lack of conceptual clarity, state-centrism and lack of vision). The paper analyses a variety of the dominant explanations of major international actors and donors, showing how these frequently do not distinguish with sufficient clarity between the ‘root causes’ of a conflict, its aggravating factors and its triggers. Specifically, a correct assessment of conflict prolonging (or sustaining) factors is of vital importance in Africa’s lingering confrontations. Broader approaches (e.g. “structural stability”) offer a better analytical framework than familiar one-dimensional explanations. Moreover, for explaining and dealing with violent conflicts a shift of attention from the nation-state towards the local and sub-regional level is needed.Aktuelle Analysen afrikanischer Gewaltkonflikte sind häufig voller Fehlinterpretationen (Mangel an Differenzierung, Genauigkeit und konzeptioneller Klarheit, Staatszentriertheit, fehlende mittelfristige Zielvorstellungen). Breitere Ansätze (z. B. das Modell der Strukturellen Stabilität) könnten die Grundlage für bessere Analyseraster und Politiken sein als eindimensionale Erklärungen. häufig differenzieren Erklärungsansätze nicht mit ausreichender Klarheit zwischen Ursachen, verschärfenden und auslösenden Faktoren. Insbesondere die richtige Einordnung konfliktverlängernder Faktoren ist in den jahrzehntelangen gewaltsamen Auseinandersetzungen in Afrika von zentraler Bedeutung. Das Diskussionspapier stellt die große Variationsbreite dominanter Erklärungsmuster der wichtigsten internationalen Geber und Akteure gegenüber und fordert einen Perspektivenwechsel zum Einbezug der lokalen und der subregionalen Ebene für die Erklärung und Bearbeitung gewaltsamer Konflikte

    The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) mission

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe cosmic neutrinos (CNs) above 20 PeV and ultra-high energy cosmic rays (UHECRs) above 20 EeV over the full sky. The POEMMA mission calls for two identical satellites flying in loose formation, each comprised of a 4-meter wide field-of-view (45 degrees) Schmidt photometer. The hybrid focal surface includes a fast (1 μ{\mu}s) ultraviolet camera for fluorescence observations and an ultrafast (10 ns) optical camera for Cherenkov observations. POEMMA will provide new multi-messenger windows onto the most energetic events in the universe, enabling the study of new astrophysics and particle physics at these otherwise inaccessible energies.Comment: 8 pages, 6 figures, presented in 36th International Cosmic Ray Conference (Madison). arXiv admin note: substantial text overlap with arXiv:1907.0621

    The Roadmap to the POEMMA mission

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe ultrahigh-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical telescopes orbiting the Earth in a loose formation designed to observe extensive air showers (EAS) via air fluorescence and Cherenkov emissions. UHECRs and UHE neutrinos above 20 EeV are observed with the stereo fluorescence technique, while tau neutrinos above 20 PeV are observed via the optical Cherenkov signals produced by up-going EAS generated by the decay of Earth-emerging tau-leptons. The POEMMA satellites are designed to quickly re-orientate to follow up transient cosmic neutrino candidate sources and obtain unparalleled neutrino flux sensitivity. Both observation techniques and the instrument design are being validated by current and upcoming missions, such as Mini-EUSO and EUSO-SPB as part of the JEM-EUSO program, and the Terzina instrument onboard the NUSES SmallSat mission. We discuss the POEMMA science performance and the current roadmap to the POEMMA mission

    Prospects for Cross-correlations of UHECR Events with Astrophysical Sources with Upcoming Space-based Experiments

    Get PDF
    Ultra-high energy cosmic rays (UHECRs) are the messengers of the most extreme physics in the cosmos; however, efforts to identify their origins have thus far been thwarted by the fact that they don’t point back to their sources. Using statistical studies cross-correlating UHECR arrival directions with astrophysical catalogs, the ground-based Pierre Auger Observatory has reported hints of a correlation with nearby starburst galaxies, as well as lower-significance correlations with other classes of astrophysical sources. Space-based UHECR experiments, such as POEMMA and ZAP, will monitor large interaction volumes on the Earth or the Moon. Within a few years of mission operation time, both missions will achieve unprecedented exposures at energies above 40 EeV across the entire sky. We present studies of the cross-correlation between UHECR event arrival directions and astrophysical catalogs as motivated by expectations for the detector performance for POEMMA and ZAP. We find that both POEMMA and ZAP will achieve 5σ discovery reach for many plausible astrophysical scenarios

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
    corecore