5,728 research outputs found
Comment on "Indispensable Finite Time Correlations for Fokker-Planck Equations from Time Series Data"
Comment on "Indispensable Finite Time Correlations for Fokker-Planck
Equations from Time Series Data"Comment: 2 pages, 1 figur
Full security of quantum key distribution from no-signaling constraints
We analyze a cryptographic protocol for generating a distributed secret key
from correlations that violate a Bell inequality by a sufficient amount, and
prove its security against eavesdroppers, constrained only by the assumption
that any information accessible to them must be compatible with the
non-signaling principle. The claim holds with respect to the state-of-the-art
security definition used in cryptography, known as universally-composable
security. The non-signaling assumption only refers to the statistics of
measurement outcomes depending on the choices of measurements; hence security
is independent of the internal workings of the devices --- they do not even
need to follow the laws of quantum theory. This is relevant for practice as a
correct and complete modeling of realistic devices is generally impossible. The
techniques developed are general and can be applied to other Bell
inequality-based protocols. In particular, we provide a scheme for estimating
Bell-inequality violations when the samples are not independent and identically
distributed.Comment: 15 pages, 2 figur
Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices
Device independent quantum key distribution aims to provide a higher degree
of security than traditional QKD schemes by reducing the number of assumptions
that need to be made about the physical devices used. The previous proof of
security by Pironio et al. applies only to collective attacks where the state
is identical and independent and the measurement devices operate identically
for each trial in the protocol. We extend this result to a more general class
of attacks where the state is arbitrary and the measurement devices have no
memory. We accomplish this by a reduction of arbitrary adversary strategies to
qubit strategies and a proof of security for qubit strategies based on the
previous proof by Pironio et al. and techniques adapted from Renner.Comment: 13 pages. Expanded main proofs with more detail, miscellaneous edits
for clarit
Multipartite Bound Information exists and can be activated
We prove the conjectured existence of Bound Information, a classical analog
of bound entanglement, in the multipartite scenario. We give examples of
tripartite probability distributions from which it is impossible to extract any
kind of secret key, even in the asymptotic regime, although they cannot be
created by local operations and public communication. Moreover, we show that
bound information can be activated: three honest parties can distill a common
secret key from different distributions having bound information. Our results
demonstrate that quantum information theory can provide useful insight for
solving open problems in classical information theory.Comment: four page
On giant piezoresistance effects in silicon nanowires and microwires
The giant piezoresistance (PZR) previously reported in silicon nanowires is
experimentally investigated in a large number of surface depleted silicon nano-
and micro-structures. The resistance is shown to vary strongly with time due to
electron and hole trapping at the sample surfaces. Importantly, this time
varying resistance manifests itself as an apparent giant PZR identical to that
reported elsewhere. By modulating the applied stress in time, the true PZR of
the structures is found to be comparable with that of bulk silicon
Locking of accessible information and implications for the security of quantum cryptography
The unconditional security of a quantum key distribution protocol is often
defined in terms of the accessible information, that is, the maximum mutual
information between the distributed key S and the outcome of an optimal
measurement on the adversary's (quantum) system. We show that, even if this
quantity is small, certain parts of the key S might still be completely
insecure when S is used in applications, such as for one-time pad encryption.
This flaw is due to a locking property of the accessible information: one
additional (physical) bit of information might increase the accessible
information by more than one bit.Comment: 5 pages; minor change
Quantum Key Distribution Using Quantum Faraday Rotators
We propose a new quantum key distribution (QKD) protocol based on the fully
quantum mechanical states of the Faraday rotators. The protocol is
unconditionally secure against collective attacks for multi-photon source up to
two photons on a noisy environment. It is also robust against impersonation
attacks. The protocol may be implemented experimentally with the current
spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure
Device for in-situ cleaving of hard crystals
Cleaving crystals in a vacuum chamber is a simple method for obtaining
atomically flat and clean surfaces for materials that have a preferential
cleaving plane. Most in-situ cleavers use parallel cutting edges that are
applied from two sides on the sample. We found in ambient experiments that
diagonal cutting pliers, where the cleavage force is introduced in a single
point instead of a line work very well also for hard materials. Here, we
incorporate the diagonal cutting plier principle in a design compatible with
ultra-high vacuum requirements. We show optical microscopy (mm scale) and
atomic force microscopy (atomic scale) images of NiO(001) surfaces cleaved with
this device.Comment: 7 pages, 3 figures Submitted to Review of Scientific Instruments
(2005
- …