3,732 research outputs found

    An information-theoretic security proof for QKD protocols

    Full text link
    We present a new technique for proving the security of quantum key distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the BB84, the six-state, and the B92 protocol with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel.Comment: 18 pages, 3 figure

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    Noisy pre-processing facilitating a photonic realisation of device-independent quantum key distribution

    Full text link
    Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized. An experimental demonstration of device-independent quantum key distribution is however challenging. A central obstacle in photonic implementations is that the global detection efficiency, i.e., the probability that the signals sent over the quantum channel are successfully received, must be above a certain threshold. We here propose a method to significantly relax this threshold, while maintaining provable device-independent security. This is achieved with a protocol that adds artificial noise, which cannot be known or controlled by an adversary, to the initial measurement data (the raw key). Focusing on a realistic photonic setup using a source based on spontaneous parametric down conversion, we give explicit bounds on the minimal required global detection efficiency.Comment: 5+16 pages, 4 figure

    The locality of the fourth root of staggered fermion determinant in the interacting case

    Full text link
    The fourth root approximation in LQCD simulations with dynamical staggered fermions requires justification. We test its validity numerically in the interacting theory in a renormalization group framework.Comment: 6 pages, Talk presented at Lattice 2005 (Machines and Algorithms

    Lower and upper bounds on the secret key rate for QKD protocols using one--way classical communication

    Full text link
    We investigate a general class of quantum key distribution (QKD) protocols using one-way classical communication. We show that full security can be proven by considering only collective attacks. We derive computable lower and upper bounds on the secret key rate of those QKD protocol involving only entropies of two--qubit density operators. As an illustration of our results, we determine new bounds for the BB84, the six-state, and the B92 protocol. We show that in all these cases the first classical processing that the legitimate partners should apply consists in adding noise. This is precisely why any entanglement based proof would generally fail here.Comment: minor changes, results for BB84 and B92 adde

    The QCD equation of state with asqtad staggered fermions

    Get PDF
    We report on our result for the equation of state (EOS) with a Symanzik improved gauge action and the asqtad improved staggered fermion action at Nt=4N_t=4 and 6. In our dynamical simulations with 2+1 flavors we use the inexact R algorithm and here we estimate the finite step-size systematic error on the EOS. Finally we discuss the non-zero chemical potential extension of the EOS and give some preliminary results.Comment: 7 pages, 6 figures, presented at Lattice2006(High Temperature and Density), to appear in Proceedings of Scienc

    Baryon masses with improved staggered quarks

    Get PDF
    The MILC collaboration's simulations with improved staggered quarks are being extended with runs at a lattice spacing of 0.06 fm with quark masses down to one tenth the strange quark mass. We give a brief introduction to these new simulations and the determination of the lattice spacing. Then we combine these new runs with older results to study the masses of the nucleon and the Omega minus in the continuum and chiral limits.Comment: 7 pages, proceedings from Lattice 2007 conferenc

    Update on the physics of light pseudoscalar mesons

    Get PDF
    We present an update of the MILC investigation of the properties of light pseudoscalar mesons using three flavors of improved staggered quarks. Results are presented for the π\pi and KK leptonic decay constants, the CKM matrix element VusV_{us}, the up, down and strange quark masses, and the coefficients of the O(p4)O(p^4) chiral lagrangian. We have new data for lattice spacing a0.15a \approx 0.15 fm with several values of the light quark mass down to one-tenth the strange quark mass, higher statistics for a0.09a \approx 0.09 fm with the light quark mass equal to one-tenth the strange quark mass, and initial results for our smallest lattice spacing, a0.06a \approx 0.06 fm with light quark mass two-fifths of the strange quark mass.Comment: 7 pages, 4 figures. To be published in Proceedings of Science (Lattice 2006) 163 (2006

    The Equation of State for QCD with 2+1 Flavors of Quarks

    Full text link
    We report results for the interaction measure, pressure and energy density for nonzero temperature QCD with 2+1 flavors of improved staggered quarks. In our simulations we use a Symanzik improved gauge action and the Asqtad O(a2)O(a^2) improved staggered quark action for lattices with temporal extent Nt=4N_t=4 and 6. The heavy quark mass msm_s is fixed at approximately the physical strange quark mass and the two degenerate light quarks have masses mud=0.1msm_{ud} =0.1m_s or 0.2ms0.2m_s. The calculation of the thermodynamic observables employs the integral method where energy density and pressure are obtained by integration over the interaction measure.Comment: 6 pages, 1 figure, 3 tables, contribution to the XXIIIrd International Symposium on Lattice Field Theory, 25-30 July 2005, Trinity College, Dublin, Irelan

    The 2+1 flavor topological susceptibility from the asqtad action at 0.06 fm

    Get PDF
    We report new data for the topological susceptibility computed on 2+1 flavor dynamical configurations with lattice spacing 0.06 fm, generated with the asqtad action. The topological susceptibility is computed by HYP smearing and compared with rooted staggered chiral perturbation theory as the pion mass goes to zero. At 0.06 fm, the raw data is already quite close to the continuum extrapolated values obtained from coarser lattices. These results provide a further test of the asqtad action with rooted staggered flavors.Comment: 7 pages, 5 figures, talk presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4, 2007, Regensburg, German
    corecore